Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 057102    DOI: 10.1088/1674-1056/25/5/057102

First-principles study of the elastic and thermodynamic properties of thorium hydrides at high pressure

Xiao-Lin Zhang(张晓林)1, Yuan-Yuan Wu(武媛媛)1, Xiao-Hong Shao(邵晓红)1, Yong Lu(鲁勇)2, Ping Zhang(张平)2
1. Beijing University of Chemical Technology, College of Science, Beijing 100029, China;
2. Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  The high pressure behaviors of Th4H15 and ThH2 are investigated by using the first-principles calculations based on the density functional theory (DFT). From the energy-volume relations, the bct phase of ThH2 is more stable than the fcc phase at ambient conditions. At high pressure, the bct ThH2 and bcc Th4H15 phases are more brittle than they are at ambient pressure from the calculated elastic constants and the Poisson ratio. The thermodynamic stability of the bct phase ThH2 is determined from the calculated phonon dispersion. In the pressure domain of interest, the phonon dispersions of bcc Th4H15 and bct ThH2 are positive, indicating the dynamical stability of these two phases, while the fcc ThH2 is unstable. The thermodynamic properties including the lattice vibration energy, entropy, and specific heat are predicted for these stable phases. The vibrational free energy decreases with the increase of the temperature, and the entropy and the heat capacity are proportional to the temperature and inversely proportional to the pressure. As the pressure increases, the resistance to the external pressure is strengthened for Th4H15 and ThH2.
Keywords:  first-principles calculations      thermodynamic properties      phonon spectra      thorium hydrides     
Received:  01 December 2015      Published:  05 May 2016
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  62.20.-x (Mechanical properties of solids)  
  63.20.-e (Phonons in crystal lattices)  
Fund: Project supported by the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of China.
Corresponding Authors:  Xiao-Hong Shao, Ping Zhang     E-mail:;

Cite this article: 

Xiao-Lin Zhang(张晓林), Yuan-Yuan Wu(武媛媛), Xiao-Hong Shao(邵晓红), Yong Lu(鲁勇), Ping Zhang(张平) First-principles study of the elastic and thermodynamic properties of thorium hydrides at high pressure 2016 Chin. Phys. B 25 057102

[1] Keller C 1976 Berlin-Heidelberg-New York
[2] Zhao C, Guo S P, Jiang H, Zhong G H and Su Y H 2015 J. Phys. Chem. C 119 13465
[3] Bickel M and Wedemeyer H 1986 Gmelin Handbook of Inorganic and Organometallic Chemistry, Thorium Supplement (Berlin: Springer)
[4] Benz R and Naoumidis A 1987 Gmelin Handbook of Inorganic Chemistry: 8th Edition, Thorium Supplement (Berlin: Springer)
[5] Kleykamp H 1992 Gmelin Handbook of Inorganic and Organometallic Chemistry, Thorium Supplement (Berlin: Springer)
[6] Brown D and Wedemayer H 1993 Gmelin Handbook of Inorganic and Organometallic Chemistry, Thorium Supplement (Berlin: Springer)
[7] Nigel P, Geckeis H and Holloway J H 1993 Gmelin Handbook of Inorganic and Organometallic Chemistry, Thorium Supplement (Berlin: Springer)
[8] Shein I R and Ivanovskii A L 2008 J. Struc. Chem. 49 348
[9] Muller W M, Blackledge J P and Libowitz G G 1968 Metal Hydrides 22
[10] Satterthwaite C B and Toepke I L 1970 Phys. Rev. Lett. 25 741
[11] Fisher E S and Renken C J 1964 Phys. Rev. 135 A482
[12] Lau K F, Vaughan R W and Satterthwaite C B 1977 Phys. Rev. B 15 2449
[13] Weaver J H, Knapp J A, Eastman D E, Peterson D T and Satterthwaite C B 1977 Phys. Rev. Lett. 39 639
[14] Dietrich M, Reichardt W and Rietschel H 1977 Solid State Commun. 21 603
[15] Brooks M S and Johansson B 1985 Physica B 130 516
[16] Shein I R, Shein K I, Medvedeva N I and Ivanovskii A L 2007 Physica B 389 296
[17] Wang B T, Zhang P, Song H Z, Shi H L, Li D F and Li W D 2010 J. Nucl. Mater. 401 124
[18] Rundle R E, Shull C G and Wollan E O 1952 Acta Cryst. 5 22
[19] Zachariasen W H 1953 Acta Cryst. 6 395
[20] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[21] Blochl P E 1994 Phys. Rev. B 50 17953
[22] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. B 77 3865
[23] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[24] Nye J F 1957 Physical Properties of Crystals (Chapter VIII)
[25] Fan H, Wang S S and Li Y H 2015 Acta Phys. Sin. 64 097101 (in Chinese)
[26] Liu Q J, Zhang N C, Liu F S and Liu Z T 2014 Chin. Phys. B 23 047101
[27] Voigt W 1928 Lehrburch der Kristallphysik (Terubner: Leipzig)
[28] Reuss A and Angew Z 1929 Math. Mech. 9 49
[29] Hill R 1952 Phys. Soc. London 65 350
[30] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[31] Yang X Y, Lu Y, Zheng F W and Zhang P 2015 Chin. Phys. B 24 116301
[32] Pugh S F 1954 Philos. Mag. 45 823
[33] Wang B T, Zhang P, Lizarraga R, Marco I D and Eriksson O 2013 Phys. Rev. B 88 104107
[34] Souvatzis P and Eriksson 2008 Phys. Rev. B 77 024110
[1] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[2] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[3] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[4] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[5] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[6] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[7] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[8] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
[9] General principles to high-throughput constructing two-dimensional carbon allotropes
Qing Xie(谢庆), Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2020, 29(3): 037306.
[10] Designing solar-cell absorber materials through computational high-throughput screening
Xiaowei Jiang(江小蔚), Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(2): 028803.
[11] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[12] Band engineering of B2H2 nanoribbons
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2019, 28(4): 046803.
[13] Hydrogenated antimonene as quantum spin Hall insulator: A first-principles study
Xin He(贺欣), Ji-Biao Li(李佶彪). Chin. Phys. B, 2019, 28(3): 037301.
[14] Electronic properties of size-dependent MoTe2/WTe2 heterostructure
Jing Liu(刘婧), Ya-Qiang Ma(马亚强), Ya-Wei Dai(戴雅薇), Yang Chen(陈炀), Yi Li(李依), Ya-Nan Tang(唐亚楠), Xian-Qi Dai(戴宪起). Chin. Phys. B, 2019, 28(10): 107101.
[15] Exploration of the structural and optical properties of a red-emitting phosphor K2TiF6:Mn4+
Xi-Long Dou(豆喜龙), Xiao-Yu Kuang(邝小渝), Xin-Xin Xia(夏欣欣), Meng Ju(巨濛). Chin. Phys. B, 2019, 28(1): 017107.
No Suggested Reading articles found!