Abstract We study the effects of the next-nearest-neighbor hopping and nearest-neighbor interactions on topological phases in a one-dimensional generalized Kitaev model. In the noninteracting case, we define a topological number and calculate exactly the phase diagram of the system. With addition of the next-nearest-neighbor hopping, the change of phase boundary between the topological and trivial regions can be described by an effective shift of the chemical potential. In the interacting case, we obtain the entanglement spectrum, the degeneracies of which correspond to the topological edge modes, by using the infinite time-evolving block decimation method. The results show that the interactions change the phase boundary as adding an effective chemical potential which can be explained by the change of the average number of particles.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.