Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 048102    DOI: 10.1088/1674-1056/25/4/048102
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Graphene/polyaniline composite sponge of three-dimensional porous network structure as supercapacitor electrode

Jiu-Xing Jiang(姜久兴), Xu-Zhi Zhang(张旭志), Zhen-Hua Wang(王振华), Jian-Jun Xu(许健君)
School of Applied Science, Harbin University of Science and Technology, Harbin 150080, China
Abstract  As a supercapacitor electrode, the graphene/polyaniline (PANI) composite sponge with a three-dimensional (3D) porous network structure is synthesized by a simple three-step method. The three steps include an in situ polymerization, freeze-drying and reduction by hydrazine vapor. The prepared sponge has a large specific surface area and porous network structure, so it is in favor of spreading the electrolyte ion and increasing the charge transfer efficiency of the system. The process of preparation is simple, easy to operate and low cost. The composite sponge shows better electrochemical performance than the pure individual graphene sponge while PANI cannot keep the shape of a sponge. Such a composite sponge exhibits specific capacitances of 487 F·g-1 at 2 mV/s compared to pristine PANI of 397 F·g-1.
Keywords:  graphene      composite sponge      supercapacitor electrode  
Received:  28 September 2015      Revised:  02 December 2015      Published:  05 April 2016
PACS:  81.05.ue (Graphene)  
  72.80.Tm (Composite materials)  
  82.45.Fk (Electrodes)  
Fund: Project supported by the Natural Science Foundation from Harbin University of Science and Technology and Harbin Institute of Technology.
Corresponding Authors:  Zhen-Hua Wang     E-mail:  wzhua@hrbust.edu.cn

Cite this article: 

Jiu-Xing Jiang(姜久兴), Xu-Zhi Zhang(张旭志), Zhen-Hua Wang(王振华), Jian-Jun Xu(许健君) Graphene/polyaniline composite sponge of three-dimensional porous network structure as supercapacitor electrode 2016 Chin. Phys. B 25 048102

[1] Luo W G, Wang H F, Cai K M, Han W P, Tan P H, Hu P A and Wang K Y 2014 Chin. Phys. Lett. 31 67202
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[3] Bunch J S, Van der Zande A M, Verbridge S S, Frank I W, Tanenbaum D M, Parpia J M, Craighead H G and McEuen P L 2007 Science 315 490
[4] Liu Y, Deng R J, Wang Z and Liu H T 2012 J. Mater. Chem. 22 13619
[5] Wang Y G, Li H Q and Xia Y Y 2006 Adv. Mater. 18 2619
[6] Yan J, Wei T, Fan Z J, Qian W Z, Zhang M L, Shen X D and Wei F 2010 J. Power Sources 195 3041
[7] Fan L Z, Hu Y S, Maier J, Adelhelm P, Smarsly B, Antonietti M 2007 Adv. Funct. Mater. 17 3083
[8] Li L X, Song H H, Zhang Q C, Yao J Y, Chen X H 2009 J. Power Sources 187 268
[9] Wang H L, Hao Q L, Yang X J, Lu L D and Wang X 2010 Nanoscale 2 2164
[10] Yao J, Shen X P, Wang B, Liu H K and Wang G X 2009 Electrochem. Commun. 11 1849
[11] Xu Y, Wang Y, Liang J, Huang Y, Ma Y, Wan X and Chen Y 2009 Nano Res. 2 343
[12] Ning G Q, Li T Y, Yan J and Xu C G 2013 Carbon 54 241
[13] Wang H L, Hao Q L, Yang X J, Lu L D and Wang X 2010 ACS Appl. Mater. Inter. 2 821
[14] Yan X B, Chen J T, Yang J, Xue Q J and Miele P 2010 ACS Appl. Mater. Inter. 2 521
[15] Compton O C, Dikin D A, Putz K W, Brinson L C and Nguyen S T 2010 Adv. Mater. 22 892
[16] Daniela C M, Dmitry V K and Jacob M B 2010 ACS Nano. 8 4806
[17] Dong X C, Wang J X and Wang J 2012 Mater. Chem. Phys. 134 576
[18] Zhai Y P, Dou Y Q, Zhao D Y and Fulvio P F 2011 Adv. Mater. 23 4828
[19] Fei J B, Cui Y, Yan X H, Yang Y, Wang K W and Li J B 2009 ACS Nano 3 3714
[20] Wang H L, Hao Q L, Yang X J and Lu L D 2009 Electrochem. Commun. 11 1158
[21] Acevedo D F, Rivarola C R, Miras M C and Barbero C A 2011 Electrochim. Acta 56 3468
[22] Rozlívková Z, Trchová M and Exnerová M 2011 Synth. Met. 161 1122
[23] Laslau C, Zujovic Z and Travas-Sejdic J 2010 Prog. Polym. Sci. 35 1403
[24] An J W, Liu J H, Zhou Y C and Zhao H F 2012 J. Phys. Chem. 116 19699
[25] Ramanathan T, Fisher F T, Ruoff R S and Brinson L C 2005 Chem. Mater. 17 1290
[26] Wu Q, Xu Y X, Yao Z Y, Liu A R and Shi G Q 2010 ACS Nano 4 1963
[27] Lee Y M, Kim J H, Kang J S and Ha S Y 2000 Macromolecules 33 7431
[28] Zhang K, Zhang L L, Zhao X S and Wu J S 2010 Chem. Mater. 22 1392
[29] Wu T, Lin Y and Liao C 2005 Carbon 43 734
[30] Liu Y, Ma Y, Guang S Y, Xu H Y and Su X Y 2014 J. Mater. Chem. A 2 813
[31] Arico A S, Bruce P, Scrosati B, Tarascon J M and Schalkwijk W V 2005 Nat. Mater. 4 366
[32] Li C and Shi G Q 2012 Nanoscale 4 5549
[33] Li L, Song H, Zhang Q and Yao J, Chen X 2009 J. Power Sources 187 268
[34] Khomenko V, Frackowiak E and Béguin F 2005 Electrochim. Acta 50 2499
[35] Zhang L L and Zhao X S 2009 Chem. Soc. Rev. 38 2520
[1] Plasmonic properties of graphene on uniaxially anisotropic substrates
Shengchuan Wang(汪圣川), Bin You(游斌), Rui Zhang(张锐), Kui Han(韩奎), Xiaopeng Shen(沈晓鹏), and Weihua Wang(王伟华). Chin. Phys. B, 2021, 30(3): 037801.
[2] Modulation of the second-harmonic generation in MoS2 by graphene covering
Chunchun Wu(吴春春), Nianze Shang(尚念泽), Zixun Zhao(赵子荀), Zhihong Zhang(张智宏), Jing Liang(梁晶), Chang Liu(刘畅), Yonggang Zuo(左勇刚), Mingchao Ding(丁铭超), Jinhuan Wang(王金焕), Hao Hong(洪浩), Jie Xiong(熊杰), and Kaihui Liu(刘开辉). Chin. Phys. B, 2021, 30(2): 027803.
[3] Optical conductivity of twisted bilayer graphene near the magic angle
Lu Wen(文露), Zhiqiang Li(李志强), and Yan He(贺言). Chin. Phys. B, 2021, 30(1): 017303.
[4] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[5] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[6] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[7] Quantum plasmons in the hybrid nanostructures of double vacancy defected graphene and metallic nanoarrays
Rui Tang(唐睿), Yang Xu(徐阳), Hong Zhang(张红), and Xin-Lu Cheng(程新路). Chin. Phys. B, 2021, 30(1): 017804.
[8] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[9] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[10] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[11] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[12] Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生). Chin. Phys. B, 2020, 29(7): 078703.
[13] Application of graphene vertical field effect to regulation of organic light-emitting transistors
Hang Song(宋航), Hao Wu(吴昊), Hai-Yang Lu(陆海阳), Zhi-Hao Yang(杨志浩), Long Ba(巴龙). Chin. Phys. B, 2020, 29(5): 057401.
[14] General principles to high-throughput constructing two-dimensional carbon allotropes
Qing Xie(谢庆), Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2020, 29(3): 037306.
[15] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
No Suggested Reading articles found!