Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 048103    DOI: 10.1088/1674-1056/25/4/048103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effects of catalyst height on diamond crystal morphology under high pressure and high temperature

Ya-Dong Li(李亚东)1, Xiao-Peng Jia(贾晓鹏)1, Bing-Min Yan(颜丙敏)2, Ning Chen(陈宁)1, Chao Fang(房超)1, Yong Li(李勇)3, Hong-An Ma(马红安)1
1 National Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
2 Center for High Pressure Science & Technology Advanced Research, Changchun 130012, China;
3 Physical and Applied Engineering Department, Tongren University, Tongren 554300, China
Abstract  The effect of the catalyst height on the morphology of diamond crystal is investigated by means of temperature gradient growth (TGG) under high pressure and high temperature (HPHT) conditions with using a Ni-based catalyst in this article. The experimental results show that the morphology of diamond changes from an octahedral shape to a cub-octahedral shape as the catalyst height rises. Moreover, the finite element method (FEM) is used to simulate the temperature field of the melted catalyst/solvent. The results show that the temperature at the location of the seed diamond continues to decrease with the increase of catalyst height, which is conducive to changing the morphology of diamond. This work provides a new way to change the diamond crystal morphology.
Keywords:  diamond crystal      morphology      catalyst      finite element method  
Received:  27 November 2015      Revised:  24 December 2015      Accepted manuscript online: 
PACS:  81.05.ug (Diamond)  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51172089), the Program for New Century Excellent Talents in University, the Natural Science Foundation of Guizhou Provincial Education Department (Grant No. KY[2013]183), and the Collaborative Fund of Science and Technology Office of Guizhou Province, China (Grant No. LH[2015]7232).
Corresponding Authors:  Hong-An Ma     E-mail:  maha@jlu.edu.cn

Cite this article: 

Ya-Dong Li(李亚东), Xiao-Peng Jia(贾晓鹏), Bing-Min Yan(颜丙敏), Ning Chen(陈宁), Chao Fang(房超), Yong Li(李勇), Hong-An Ma(马红安) Effects of catalyst height on diamond crystal morphology under high pressure and high temperature 2016 Chin. Phys. B 25 048103

[1] Bundy F P, Hall H T, Strong H M and Wentorf R H 1955 Nature 176 51
[2] Akaishi M, Kanda H and Yamaoka S 1990 Jpn. J. Appl. Phys. 29 L1172
[3] Akaishi M, Kanda H and Yamaoka S 1993 Science 259 1592
[4] Sumiya H and Satoh S 1999 Int. J. Refract. Met. Hard Mater. 17 345
[5] Wakatsuki M 1996 Jpn. J. Appl. Phys. 5 337
[6] Bovenkerk H P, Bundy F P, Hall H T, Strong H M and Wentrorf Jun R H 1959 Nature 184 1094
[7] Strong H M and Chrenko R M 1971 J. Phys. Chem. 75 1838
[8] Vereahchagin L F, Kalashnikov Y A and Shaliuav M D 1975 High Temp. High Press. 7 41
[9] Sung C M and Tai M F 1996 High Temp. High Press. 27 523
[10] Kanda H, Akaishi M and Yamaoka S 1994 Appl. Phys. Lett. 65 784
[11] Pal'yanov Yu N, Sokol A G, Borzdov Yu M, Khokhryakov A F, Shatsky A F and Sobolev N V 1999 Diamond Relat. Mater. 8 1118
[12] Spivak A V, Litvin Y A, Shushkanova A V, Litvin V Y and Shiryaev A A 2008 Eur. J. Mineral 20 341
[13] Kiminori S, Minoru A and Shinobu Y 1999 Diamond Relat. Mater. 8 1900
[14] Hu X J and Li N 2013 Chin. Phys. Lett. 30 088102
[15] Zhang C M, Zheng Y B, Jiang Z G, Lv X Y, Hou X, Hu S and Liu J W 2010 Chin. Phys. Lett. 27 088103
[16] Fan X H, Xu B, Niu Z, Zhai T G and Tian B 2012 Chin. Phys. Lett. 29 048102
[17] Fang C, Jia X P, Chen N, Zhou Z X, Li Y D, Li Y and Ma H A 2015 Acta Phys. Sin. 64 128101 (in Chinese)
[18] Xiao H Y, Li S S, Qin Y K, Liang Z Z, Zhang Y S, Zhang D M and Zhang Y S 2014 Acta Phys. Sin. 63 198101 (in Chinese)
[19] Hu M H, Bi N, Li S S, Su T C, Zhou A G, Hu Q, Jia X P and Ma H A 2015 Chin. Phys. B 24 038101
[20] Zhou Z X, Jia X P, Li Y, Yan B M, Wang F B, Fang C, Chen N, Li Y D and Ma H A 2014 Acta Phys. Sin. 63 248104 (in Chinese)
[21] Li Y, Jia X P, Hu M H, Liu X B, Yan B M, Zhou Z X, Zhang Z F and Ma H A 2012 Chin. Phys. B 21 058101
[22] Huang G F, Jia X P, Li Y, Hu M H, Li Z C, Yan B M and Ma H A 2011 Chin. Phys. B 20 078103
[23] Li Z C, Jia X P, Huang G F, Hu M H, Li Y, Yan B M and Ma H A 2013 Chin. Phys. B 22 014701
[24] Han Q G, Ban Q C and Zhu P W 2015 J. Crystal Growth 422 29
[25] Li R, Ma H A, Li M Z, Han Q G, Liang Z Z, Yin B H, Liu W Q and Jia X P 2007 High Press. Res. 27 249
[26] Han Q G, Li M Z, Jia X P, Ma H A and Li Y F 2011 Diamond Relat. Mater. 20 969
[27] Strong H M and Hanneman R E 1967 J. Phys. Chem. 46 3668
[1] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[2] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[3] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[4] Laser fragmentation in liquid synthesis of novel palladium-sulfur compound nanoparticles as efficient electrocatalysts for hydrogen evolution reaction
Guo-Shuai Fu(付国帅), Hong-Zhi Gao(高宏志), Guo-Wei Yang(杨国伟), Peng Yu(于鹏), and Pu Liu(刘璞). Chin. Phys. B, 2022, 31(7): 077901.
[5] Single-polarization single-mode hollow-core negative curvature fiber with nested U-type cladding elements
Qi-Wei Wang(王启伟), Shi Qiu(邱石), Jin-Hui Yuan(苑金辉), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Yu-Wei Qu(屈玉玮), Xian Zhou(周娴), Bin-Bin Yan(颜玢玢), Qiang Wu(吴强), Kui-Ru Wang(王葵如), Xin-Zhu Sang(桑新柱), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2022, 31(6): 064213.
[6] Acoustic radiation force on a rigid cylinder near rigid corner boundaries exerted by a Gaussian beam field
Qin Chang(常钦), Yuchen Zang(臧雨宸), Weijun Lin(林伟军), Chang Su(苏畅), and Pengfei Wu(吴鹏飞). Chin. Phys. B, 2022, 31(4): 044302.
[7] Research progress of Pt and Pt-based cathode electrocatalysts for proton-exchange membrane fuel cells
Ni Suo(索妮), Longsheng Cao(曹龙生), Xiaoping Qin(秦晓平), and Zhigang Shao(邵志刚). Chin. Phys. B, 2022, 31(12): 128108.
[8] Accelerated oxygen evolution kinetics on Ir-doped SrTiO3 perovskite by NH3 plasma treatment
Li-Li Deng(邓丽丽), Xiao-Ping Ma(马晓萍), Man-Ting Lu(卢曼婷), Yi He(何弈), Rong-Lei Fan(范荣磊), and Yu Xin(辛煜). Chin. Phys. B, 2022, 31(11): 118201.
[9] Transition metal anchored on C9N4 as a single-atom catalyst for CO2 hydrogenation: A first-principles study
Jia-Liang Chen(陈嘉亮), Hui-Jia Hu(胡慧佳), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2022, 31(10): 107306.
[10] Migration and shape of cells on different interfaces
Xiaochen Wang(王晓晨), Qihui Fan (樊琪慧), and Fangfu Ye(叶方富). Chin. Phys. B, 2021, 30(9): 090502.
[11] C9N4 as excellent dual electrocatalyst: A first principles study
Wei Xu(许伟), WenWu Xu(许文武), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(9): 096802.
[12] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[13] Single boron atom anchored on graphitic carbon nitride nanosheet (B/g-C2N) as a photocatalyst for nitrogen fixation: A first-principles study
Hao-Ran Zhu(祝浩然), Jia-Liang Chen(陈嘉亮), and Shi-Hao Wei(韦世豪). Chin. Phys. B, 2021, 30(8): 083101.
[14] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[15] Laser-induced thermal lens study of the role of morphology and hydroxyl group in the evolution of thermal diffusivity of copper oxide
Riya Sebastian, M S Swapna, Vimal Raj, and S Sankararaman. Chin. Phys. B, 2021, 30(6): 067801.
No Suggested Reading articles found!