Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 097502    DOI: 10.1088/1674-1056/23/9/097502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic phase transition and magnetocaloric effect in Mn1-xZnxCoGe alloys

Shen Cheng-Juan, Liu Qiang, Gong Yuan-Yuan, Wang Dun-Hui, Du You-Wei
National Laboratory of Solid State Microstructures and Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, China
Abstract  The magnetic phase transition and magnetocaloric effect are studied in a series of Mn1-xZnxCoGe (x=0.01, 0.02, 0.04, and 0.08) alloys. By introducing a small quantity of Zn element, the structural transformation temperature of the MnCoGe alloy is greatly reduced and a first-order magnetostructural transition is observed. Further increasing the Zn concentration results in a second-order ferromagnetic transition. Large room-temperature magnetocaloric effects with small magnetic hysteresis are obtained in alloys with x=0.01 and 0.02, which suggests their potential application in magnetic refrigeration.
Keywords:  magnetocaloric effect      magnetostructural transition  
Received:  02 April 2014      Revised:  09 May 2014      Published:  15 September 2014
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  81.30.Kf (Martensitic transformations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51371095).
Corresponding Authors:  Wang Dun-Hui     E-mail:  wangdh@nju.edu.cn

Cite this article: 

Shen Cheng-Juan, Liu Qiang, Gong Yuan-Yuan, Wang Dun-Hui, Du You-Wei Magnetic phase transition and magnetocaloric effect in Mn1-xZnxCoGe alloys 2014 Chin. Phys. B 23 097502

[1] Pecharsky V K and Gschneidner Jr K A 1999 J. Magn. Magn. Mater. 200 44
[2] Glanz J 1998 Science 279 2045
[3] Gschneidner Jr K A, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[4] Trung N T, Biharie V, Zhang L, Caron L, Buschow K H J and Brück E 2010 Appl. Phys. Lett. 96 162507
[5] Trung N T, Zhang L, Caron L, Buschow K H J and Brück E 2010 Appl. Phys. Lett. 96 172504
[6] Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B and de Boer F 2012 Nat. Commun. 3 873
[7] Liu E K, Zhang H G, Xu G Z, Zhang X M, Ma R S, Wang W H, Chen J L, Zhang H W, Wu G H, Feng L and Zhang X X 2013 Appl. Phys. Lett. 102 122405
[8] Zhang C L, Zhu C, Chen J, Wang T Z and Han Z D 2012 J. Appl. Phys. 112 123911
[9] Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L and Du Y W 2013 Chin. Phys. B 22 077506
[10] Chen F H, Gong C W, Guo Y P, Zhang M G and Chai Y S 2014 Chin. Phys. B 23 067501
[11] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L and PlanesA 2005 Nat. Mater. 4 450
[12] Trung N T, Ou Z Q, Gortenmulder T J, Tegus O, Buschow K H J and Brück E 2009 Appl. Phys. Lett. 94 102513
[13] Liu E K, Zhu W, Feng L, Chen J L, Wang W H, Wu G H, Liu H Y, Meng F B, Luo H Z and Li Y X 2010 Europhys. Lett. 91 17003
[14] Koyama K, Sakai M, Kanomata T and Watanabe K 2004 Jpn. J. Appl. Phys. 43 8036
[15] Kanomata T, Ishigaki H, Suzuki T, Yoshida H, Abe S and Kaneko T 1995 J. Magn. Magn. Mater. 140 131
[16] Wang J T, Wang D S, Chen C F, Nashima O, Kanomata T, Mizuseki H and Kawazoe Y 2006 Appl. Phys. Lett. 89 262504
[17] Ma S C, Wang D H, Xuan H C, Shen L J, Cao Q Q and Du Y W 2011 Chin. Phys. B 20 087502
[18] Li G J, Liu E K, Zhang H G, Zhang Y J, Chen J L, Wang W H, Zhang H W, Wu G H and Yu S Y 2013 J. Magn. Magn. Mater. 332 146
[19] SamantaT, DubenkoI, QuetzA, Stadler S and Ali N 2012 Appl. Phys. Lett. 101 242405
[20] Ma S C, Zheng Y X, Xuan H C, Shen L J, Cao Q Q, Wang D H and Du Y W 2012 J. Magn. Magn. Mater. 324 135
[21] Lin S, Tegus O, Brück E, Dagula W, Gortenmulder T J and Buschow K H J 2006 IEEE. Trans. Magn. 42 3776
[22] Zhang C L, Wang D H, Cao Q Q, Ma S C, Xuan H C and Du Y W 2010 J. Phys. D 43 205003
[23] Caron L, Trung N T and Brück E 2011 Phys. Rev. B 84 020414
[24] Arrott A 1957 Phys. Rev. 108 1394
[25] Amaral J S and Amaral V S 2009 Appl. Phys. Lett. 94 042506
[26] Liu G J, Sun J R, Shen J, Gao B, Zhang H W, Hu F X and Shen B G 2007 Appl. Phys. Lett. 90 032507
[27] de Oliveira N A and von Ranke P J 2008 Phys. Rev. B 77 214439
[28] Pecharsky V K and Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
[29] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
[1] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[2] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[3] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[4] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[5] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[6] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
[7] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤), Yaming Wang(王雅鸣), Jiang Wang(王江), Zhongming Ren(任忠鸣). Chin. Phys. B, 2020, 29(10): 107502.
[8] Critical behavior and magnetocaloric effect in magnetic Weyl semimetal candidate Co2-xZrSn
Tianlin Yu(于天麟), Xiaoyun Yu(余骁昀), En Yang(杨恩), Chang Sun(孙畅), Xiao Zhang(张晓), Ming Lei(雷鸣). Chin. Phys. B, 2019, 28(6): 067501.
[9] Magnetic properties and magnetocaloric effects in (Ho1-xYx)5Pd2 compounds
X F Wu(武小飞), C P Guo(郭翠萍), G Cheng(成钢), C R Li(李长荣), J Wang(王江), Y S Du(杜玉松), G H Rao(饶光辉), Z M Du(杜振民). Chin. Phys. B, 2019, 28(5): 057502.
[10] Magnetoresistance hysteresis in topological Kondo insulator SmB6 nanowire
Ling-Jian Kong(孔令剑), Yong Zhou(周勇), Hua-Ding Song(宋化鼎), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2019, 28(10): 107501.
[11] Magnetostructural transformation and magnetocaloric effect in Mn48-xVxNi42Sn10 ferromagnetic shape memory alloys
Najam ul Hassan, Ishfaq Ahmad Shah, Tahira Khan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Xuefei Miao(缪雪飞), Feng Xu(徐锋). Chin. Phys. B, 2018, 27(3): 037504.
[12] Magnetocaloric effect in the layered organic-inorganic hybrid (CH3NH3)2CuCl4
Yinina Ma(马怡妮娜), Kun Zhai(翟昆), Liqin Yan(闫丽琴), Yisheng Chai(柴一晟), Dashan Shang(尚大山), Young Sun(孙阳). Chin. Phys. B, 2018, 27(2): 027501.
[13] Ferromagnetism and magnetostructural coupling in V-doped MnNiGe alloys
Hui Yang(杨慧), Jun Liu(刘俊), Chao Li(李超), Guang-Long Wang(王广龙), Yuan-Yuan Gong(龚元元), Feng Xu(徐锋). Chin. Phys. B, 2018, 27(10): 107502.
[14] Influences of La and Ce doping on giant magnetocaloric effect of EuTiO
Zhao-Jun Mo(莫兆军), Qi-Lei Sun(孙启磊), Jun Shen(沈俊), Mo Yang(杨墨), Yu-Jin Li(黎玉进), Lan Li(李岚), Guo-Dong Liu(刘国栋), Cheng-Chun Tang(唐成春), Fan-Bin Meng(孟凡斌). Chin. Phys. B, 2018, 27(1): 017501.
[15] Influence of Ni/Mn ratio on magnetostructural transformation and magnetocaloric effect in Ni48-xCo2Mn38+xSn12 (x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys
Ishfaq Ahmad Shah, Najam ul Hassan, Abdur Rauf, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Guizhou Xu(徐桂舟), Feng Xu(徐锋). Chin. Phys. B, 2017, 26(9): 097501.
No Suggested Reading articles found!