Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 047306    DOI: 10.1088/1674-1056/19/4/047306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

An oxide/silicon core/shell nanowire metal-oxide semiconductor field-effect transistor

Zhang Li-Ning, He Jin, Zhou Wang, Chen Lin, Xu Yi-Wen
Tera-Scale Research Centre, Key Laboratory of Microelectronic Devices and Circuits of Ministry of Education, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
Abstract  This paper studies an oxide/silicon {c}ore/{s}hell {n}anowire {M}OSFET (OS-CSNM). Through three-dimensional device simulations, we have demonstrated that the OS-CSNM has a lower leakage current and higher $I_{\rm on}/I_{\rm off}$ ratio after introducing the oxide core into a {t}raditional {n}anowire {M}OSFET (TNM). The oxide/silicon OS-CSNM structure suppresses threshold voltage roll-off, drain induced barrier lowering and subthreshold swing degradation. Smaller intrinsic device delay is also observed in OS-CSNM in comparison with that of TNM.
Keywords:  nanowire MOSFET      core/shell      nanowire  
Received:  05 July 2009      Revised:  02 August 2009      Published:  15 April 2010
PACS:  85.30.Tv (Field effect devices)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.35.-p (Nanoelectronic devices)  
Fund: Project supported by National Natural Science Foundation of China (Grant No.~60876027) and Research Fund for the Doctoral Program of Higher Education of China (Grant No.~200800010054).

Cite this article: 

Zhang Li-Ning, He Jin, Zhou Wang, Chen Lin, Xu Yi-Wen An oxide/silicon core/shell nanowire metal-oxide semiconductor field-effect transistor 2010 Chin. Phys. B 19 047306

[1] Auth C P and Plummer J D 1997 IEEE Electron Device Lett. 18 74
[2] Singh N, Agarwal A, Bera L K, Liow T Y, Yang R, Rustagi S C, Tung C H, Kumar R, Lo G Q, Balasubramanian N and Kwong D 2006 IEEE Electron Device Lett. 27 383
[3] Yang B, Buddharaju K, Teo S, Singh N, Lo G and Kwong D 2008 IEEE Electron Device Lett. 29 791
[4] Cui Y, Lauhon L J, Gudiksen M S, Wang J and Lieber C M 2001 Appl. Phys. Lett. 78 2214
[5] Fu J, Singh N, Buddharaju K, Teo S, Shen C, Jiang Y, Zhu C, Yu M, Lo G, Balasubramanian N, Kwong D, Gnani E and Baccarani G 2008 IEEE Electron Device Lett. 29 518
[6] Rustagi S, Singh N, Fang W, Buddharaju K, Omampuliyur S, Teo S, Tung C, Lo G, Balasubramanian N and Kwong D 2007 IEEE Electron Device Lett. 28 1021
[7] Singh N, Fang W, Rustagi S, Budharaju K, Teo S, Mohanraj S, Lo G, Balasubramanian N and Kwong D L 2006 IEEE Electron Device Lett. 27 558
[8] Lauhon L J, Gudiksen M S, Wang D and Lieber C M 2002 Nature 420 57
[9] Waite A M, Lloyd N S, Auhburn P, Evans A G, Ernst T, Achard H, Deleonibus S, Wang Y and Hemment P 2003 ESSDRC} {223
[10] TCAD Sentaurus Device User's Manual} 2007 Synopsys, Mountain View, CA
[11] Wettstein A, Schenk A and Fichtner W 2001 IEEE Trans. Electron Devices 48 279
[12] Wang J, Polizzi E and Lundstrom M S 2004 J. Appl. Phys. 96 2192
[13] Ge L and Fossum J G 2002 IEEE Trans. Electron Devices] 49 287
[14] Ray B and Mahapatra S 2008 IEEE Trans. Electron Devices 55 2409
[15] Yu B, Wang L, Yuan Y, Asbeck P M and Taur Y 2008 IEEE Trans. Electron Devices 55 2846
[16] Choi Y, Asano K, Lindert N, Subramanian V, King T, Bokor J and Hu C 2000 IEEE Electron Device Lett. 21 254
[17] Stern F 1982 Phys. Rev. B 5 4891
[1] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[2] Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip
Xiao-Ping Ma(马晓萍), Hong-Guang Piao(朴红光), Lei Yang(杨磊), Dong-Hyun Kim, Chun-Yeol You, Liqing Pan(潘礼庆). Chin. Phys. B, 2020, 29(9): 097502.
[3] Flux-to-voltage characteristic simulation of superconducting nanowire interference device
Xing-Yu Zhang(张兴雨), Yong-Liang Wang(王永良), Chao-Lin Lv(吕超林), Li-Xing You(尤立星), Hao Li(李浩), Zhen Wang(王镇), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2020, 29(9): 098501.
[4] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[5] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[6] Investigation of dimensionality in superconducting NbN thin film samples with different thicknesses and NbTiN meander nanowire samples by measuring the upper critical field
Mudassar Nazir, Xiaoyan Yang(杨晓燕), Huanfang Tian(田焕芳), Pengtao Song(宋鹏涛), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Xueyi Guo(郭学仪), Yirong Jin(金贻荣), Lixing You(尤立星), Dongning Zheng(郑东宁). Chin. Phys. B, 2020, 29(8): 087401.
[7] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[8] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[9] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[10] Visualization of tunnel magnetoresistance effect in single manganite nanowires
Yang Yu(郁扬), Wenjie Hu(胡雯婕), Qiang Li(李强), Qian Shi(时倩), Yinyan Zhu(朱银燕), Hanxuan Lin(林汉轩), Tian Miao(苗田), Yu Bai(白羽), Yanmei Wang(王艳梅), Wenting Yang(杨文婷), Wenbin Wang(王文彬), Hangwen Guo(郭杭闻), Lifeng Yin(殷立峰), Jian Shen(沈健). Chin. Phys. B, 2020, 29(1): 018501.
[11] Infrared light-emitting diodes based on colloidal PbSe/PbS core/shell nanocrystals
Byung-Ryool Hyun, Mikita Marus, Huaying Zhong(钟华英), Depeng Li(李德鹏), Haochen Liu(刘皓宸), Yue Xie(谢阅), Weon-kyu Koh, Bing Xu(徐冰), Yanjun Liu(刘言军), Xiao Wei Sun(孙小卫). Chin. Phys. B, 2020, 29(1): 018503.
[12] Semiconductor-metal transition in GaAs nanowires under high pressure
Yi-Lan Liang(梁艺蓝), Zhen Yao(姚震), Xue-Tong Yin(殷雪彤), Peng Wang(王鹏), Li-Xia Li(李利霞), Dong Pan(潘东), Hai-Yan Li(李海燕), Quan-Jun Li(李全军), Bing-Bing Liu(刘冰冰), Jian-Hua Zhao(赵建华). Chin. Phys. B, 2019, 28(7): 076401.
[13] Wavelength dependence of intrinsic detection efficiency of NbN superconducting nanowire single-photon detector
Yong Wang(王勇), Hao Li(李浩), Li-Xing You(尤立星), Chao-Lin Lv(吕超林), He-Qing Wang(王河清), Xing-Yu Zhang(张兴雨), Wei-Jun Zhang(张伟君), Hui Zhou(周慧), Lu Zhang(张露), Xiao-Yan Yang(杨晓燕), Zhen Wang(王镇). Chin. Phys. B, 2019, 28(7): 078502.
[14] Temperature-dependent subband mobility characteristics in n-doped silicon junctionless nanowire transistor
Ya-Mei Dou(窦亚梅), Wei-Hua Han(韩伟华), Yang-Yan Guo(郭仰岩), Xiao-Song Zhao(赵晓松), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华). Chin. Phys. B, 2019, 28(6): 066804.
[15] Optically manipulated nanomechanics of semiconductor nanowires
Chenzhi Song(宋晨之), Shize Yang(杨是赜), Xiaomin Li(李晓敏), Xiao Li(李晓), Ji Feng(冯济), Anlian Pan(潘安练), Wenlong Wang(王文龙), Zhi Xu(许智), Xuedong Bai(白雪冬). Chin. Phys. B, 2019, 28(5): 054204.
No Suggested Reading articles found!