Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 016102    DOI: 10.1088/1674-1056/ae29fb
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles insights into strain-mediated He migration and irradiation resistance in W-Ta-Cr-V complex alloys

Mengdie Wang(王梦蝶)1, Chao Zhang(张超)1,†, Xinyue Lan(兰新月)1, Biao Hu(胡标)1, and Xuebang Wu(吴学邦)2,‡
1 School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China;
2 Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
Abstract  High-performance intelligent protective materials are vital for nuclear energy systems exposed to extreme irradiation. Among them, tungsten-based alloys demonstrate exceptional potential owing to their superior irradiation resistance. Recent experimental studies have demonstrated that W-TaCr-V alloys exhibit excellent irradiation resistance under helium (He) ion irradiation. However, the underlying mechanisms, especially the migration behavior of He atoms, remain unclear. In this work, the influences of uniaxial tensile and compressive strain on He migration in W-Ta-Cr-V complex alloys have been systematically studied through first-principles calculations. Our results demonstrate that He atoms preferentially occupy the tetrahedral interstitial sites, with interstitial formation energies significantly reduced compared to pure W. The introduction of Ta, Cr, and V alloying elements markedly increases the He migration barriers, effectively suppressing He diffusion. Compressive strain increases the migration barriers, inhibiting He bubbles nucleation and growth, while tensile strain decreases the barriers, facilitating bubble formation. Compared to pure W, the W-Ta-Cr-V alloys exhibit both lower He interstitial formation energies and higher migration barriers, with further enhancement under compressive strain. Specifically, compressive strain of 6% increases the He migration barrier of the W-Ta-Cr-V alloy by 0.166 eV, which further widens the difference relative to pure W. These findings provide a theoretical explanation for the superior irradiation resistance of tungsten-based alloys observed experimentally and promote the understanding of irradiation damage in these alloys under strain.
Keywords:  He bubbles      migration barriers      tensile/compressive strain      W-Ta-Cr-V alloys      first-principles calculations  
Received:  08 September 2025      Revised:  04 December 2025      Accepted manuscript online:  09 December 2025
PACS:  61.72.-y (Defects and impurities in crystals; microstructure)  
  66.30.-h (Diffusion in solids)  
  62.20.-x (Mechanical properties of solids)  
  61.66.Dk (Alloys )  
  71.15.-m (Methods of electronic structure calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11505003 and 52325103) and the Anhui Provincial Natural Science Foundation (Grant No. 2108085MA25).
Corresponding Authors:  Chao Zhang, Xuebang Wu     E-mail:  chaozhang@mail.bnu.edu.cn;xbwu@issp.ac.cn

Cite this article: 

Mengdie Wang(王梦蝶), Chao Zhang(张超), Xinyue Lan(兰新月), Biao Hu(胡标), and Xuebang Wu(吴学邦) First-principles insights into strain-mediated He migration and irradiation resistance in W-Ta-Cr-V complex alloys 2026 Chin. Phys. B 35 016102

[1] Was G S, Petti D, Ukai S and Zinkle S 2019 J. Nucl. Mater. 527 151837
[2] Sun T Y, Niu T J, Shang Z X, Chen W Y, Li M M, Wang H Y and Zhang X H 2023 Acta Mater. 245 118613
[3] Emerson J N, Marrero-Jackson E H, Nemets G A, Okuniewski M A and Wharry J P 2024 Mater. Des. 244 113134
[4] Odette G R, Almirall N, Wells P B and Yamamoto T 2021 Acta Mater. 212 116922
[5] Ouyang W H, Liu J B, Lai W S, Li J H and Liu B X 2023 Chin. Phys. B 32 036101
[6] Fan C C, Li Q, Ding J, Liang Y X, Shang Z X, Li J, Su R Z, Cho J, Chen D, Wang Y Q, Wang J, Wang H Y and Zhang X H 2019 Acta Mater. 177 107
[7] Zhang Y X, Schwen D, Zhang Y F and Bai X M 2019 J. Alloys Compd. 794 482
[8] Nafr ai G, Horv ath E, Koll ar M, Horv ath A, Andricevic P, Sienkiewicz A, Forro L and N afr adi B 2020 Energy Convers. Manag. 205 112423
[9] Schmidt F, Hosemann P, Scarlat R O, Schreiber D K, Scully J R and Uberuaga B P 2021 Annu. Rev. Mater. Res. 51 293
[10] Daghbouj N, Sen H S, Callisti M, Vronka M, Karlik M, Duchon J, Cech J, Havranek and Polcar T 2022 Acta Mater. 229 117807
[11] Kalita P, Parveen R, Ghosh S, Grover V, Mishra Y K and Avasthi D K 2025 J. Alloys Compd. 1012 178330
[12] Zinkle S J, Terrani K A, Gehin J C, Ott L J and Snead L L 2014 J. Nucl. Mater. 448 374
[13] Reali L and Dudarev S L 2024 Nucl. Fusion 64 056001
[14] Han W Z, Demkowicz M J, Mara N A, Fu E G, Sinha S, Rollett A D, Wang Y Q, Carpenter J S, Beyerlein I J and Misra A 2013 Adv. Mater. 25 6975
[15] Linke J, Du J, Loewenhoff T, Pintsuk G, Spilker B, Steudel I and Wirtz M 2019 Matter Radiat. Extrem. 4 056201
[16] Tan X Y, Luo L M, Lu Z L, Luo G N, Zan X, Zan J G and Wu Y C 2015 Powder Technol. 269 437
[17] Tweer J, Day R, Derra T, Dorow-Gerspach D, Loewenhoff T, Wirtz M, Linsmeier C, Bergs T and Natour G 2024 Nucl. Mater. Energy 38 101577
[18] Catarino N, Dias M, Lopes J, Jepu I and Alves E 2018 Surf. Coat. Technol. 355 143
[19] Huang H X, Li Y H, Li Z Z, Hou P W, Ma F F, Ren Q Y, Zhou H B and Lu G H 2022 Tungsten 4 219
[20] Pan S H, Yao G C, Cui Y N, Meng F S, Luo C, Zheng T Q and Singh G 2023 Tungsten 5 1
[21] Liu L X, Jiang M X, Gao N, Chen Y C, Hu W Y and Deng H Q 2025 Chin. Phys. B 34 046103
[22] Marian J, Becquart C S, Domain C, Dudarev S L, Gilbert M R, Kurtz R J, Mason D R, Nordlund K, Sand A E, Snead L L, Suzudo T and Wirth B D 2017 Nucl. Fusion 57 092008
[23] Osetsky Y N 2021 Tungsten 3 65
[24] Akopov G, Hu S L, Shumilov K D, Hamilton S G, Pangilinan L E, Mehmedovic Z, Yin H, Robinson P J, Roh I, Kavner A, Alexandrova A N, Tolbert S H and Kaner R B 2024 Chem. Mater. 36 3233
[25] El-Atwani O, Hattar K, Hinks J A, Greaves G, Harilal S S and Hassanein A 2015 J. Nucl. Mater. 458 216
[26] Mu Y C, Shen C J, Li Z, Shi S J and Xiong L 2025 Int. J. Refract. Met. Hard Mater. 126 106945
[27] Rieth M, Dudarev S L, de Vicente S M G, et al. 2013 J. Nucl. Mater. 432 482
[28] Wang L, Hong B B, Chen H Y, Qi H, Zhang J G, Hang W, Han Y X, Wang J H, Ren K and Lyu B 2025 Powder Technol. 455 120758
[29] Qin C L, Liu J D, Ma S Y, Du J G, Jiang G and Zhao L 2024 Intermetallics 172 108384
[30] Kalita D, Jozwik I, Kurpaska L, Zhang Y, Mulewska K, Chrominski W, O’Connell J, Ge Y, Boldman W L, Rack P D, Wang Y, Weber W J and Jagielski J 2023 Nucl. Mater. Energy 37 101513
[31] El-Atwani O, Li N, Li M, Devaraj A, Baldwin J K S, Schneider M M, Sobieraj D, Wrobel J S, Nguyen-Manh D, Maloy S A and Martinez E 2019 Sci. Adv. 5 eaav2002
[32] Shi Y Z, Jiang Z Y, Xia T J, Zhang W J, Yang P S, Ren X Y, Wang M Q, Liang L S, Cao X Z and Zhu K G 2023 J. Nucl. Mater. 578 154335
[33] Cui M H, Gao N, Wang D, Gao X and Wang Z G 2019 Nucl. Instrum. Methods Phys. Res., Sect. B 460 60
[34] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[35] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[36] Blochl P E 1994 Phys. Rev. B 50 17953
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Featherston F H and Neighbours J R 1963 Phys. Rev. 130 1324
[39] Kong X S, Song C, Chen L, Xie Z M, Liu C S and Hou J 2022 Tungsten 4 231
[40] Zhang N N, Zhang Y J, Yang Y, Zhang P, Hu Z Y and Ge C C 2017 Eur. Phys. J. B 90 101
[41] Zhou H B, Li Y H and Lu G H 2016 Comput. Mater. Sci. 112 487
[42] Zhang N N, Zhang Y J, Yang Y, Zhang P and Ge C C 2019 Phys. Lett. A 383 2777
[43] You Y W, Hou J, Sun J J, Kong X S, Wu X B, Liu C S and Chen J L 2018 J. Nucl. Mater. 499 1
[44] Henkelman G, Uberuaga B P and Jonsson H 2000 J. Chem. Phys. 113 9901
[45] Wang Q Q, Kong X G, Yu Y, Xin T Y, Pan R J and Wu L 2023 J. Nucl. Mater. 587 154706
[46] Yang L, Liu H and Zu X 2009 Int. J. Mod. Phys. B 23 2077
[47] Becquart C S and Domain C 2006 Phys. Rev. Lett. 97 196402
[48] Kawabe T 2019 Sci. Rep. 9 14993
[49] Su Z, Yang J, Zhou X, Li J, Zhang P, Zhang C, Shi T, Jin K, Sun Y, Wu L, Wu X, Ma E and Lu C 2025 J. Mater. Sci. Technol. 227 142
[50] Zhao S J 2021 J. Am. Ceram. Soc. 104 1874
[51] Gonzalez C and Iglesias R 2014 J. Mater. Sci. 49 8127
[52] Roy A, Singh P, Balasubramanian G and Johnson D D 2022 Acta Mater. 226 117611
[53] Wang X K, Yang Q K, Wu W S, Zhang W, Zhang Y, Yan D S, Gan K F, Liu B and Li Z M 2025 Acta Mater. 282 120501
[1] Machine learning-assisted optimization of MTO basis sets
Zhiqiang Li(李志强), and Lei Wang(王蕾). Chin. Phys. B, 2026, 35(1): 016301.
[2] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[3] Site occupation of Al doping in Lu2SiO5: The role of ionic radius versus chemical valence
Xuejiao Sun(孙雪娇), Yu Cui(崔宇), Feng Gao(高峰), Zhongjun Xue(薛中军), Shuwen Zhao(赵书文), Dongzhou Ding(丁栋舟), Fan Yang(杨帆), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2025, 34(9): 096101.
[4] Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta)
Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(9): 097402.
[5] First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si
Zi-Kai Zhou(周子凯) and Jun Kang(康俊). Chin. Phys. B, 2025, 34(8): 087102.
[6] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
[7] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[8] Phonon-mediated superconductivity in orthorhombic XS (X = Nb, Ta or W)
Guo-Hua Liu(刘国华), Kai-Yue Jiang(江恺悦), Yi Wan(万一), Shu-Xiang Qiao(乔树祥), Jin-Han Tan(谭锦函), Na Jiao(焦娜), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(2): 027401.
[9] Comparative study on electronic structures of two phases compounds and origin of the structural phase transition in LiFePO4
Peiru Yang(杨佩如), Xinchun Du(杜新春), Jie Li(李杰), and Siqi Shi(施思齐). Chin. Phys. B, 2025, 34(11): 118201.
[10] Stable structures and superconductivity of Ca-As-H system under high pressure
Lanci Guo(郭兰慈), Qiyue Zhang(张启悦), Yuechen Guo(郭悦晨), Gang Chen(陈刚), and Jurong Zhang(张车荣). Chin. Phys. B, 2025, 34(11): 117401.
[11] Swarm-intelligent predictions of high-TC polymorphs in monolayer CrI3 above 77 K
Ying Luo(罗颖), Shuangyi Xu(许双旖), Yanan Wang(王亚南), and Yunwei Zhang(张云蔚). Chin. Phys. B, 2025, 34(11): 117105.
[12] Emergent ferroelectricity in the two-dimensional Janus MoSSe monolayer driven by nondegenerate phonon instability
Zhi-Long Cao(曹智龙), Chen Cao(曹琛), Jia-Jun Xu(徐佳俊), Jia-Xu Yan(闫家旭), Lei Liu(刘雷), and De-Zhen Shen(申德振). Chin. Phys. B, 2025, 34(11): 117305.
[13] Stable structures and properties of Ru2Al5
Jing Luo(罗晶), Meiguang Zhang(张美光), Xiaofei Jia(贾晓菲), and Qun Wei(魏群). Chin. Phys. B, 2025, 34(1): 016301.
[14] Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC
Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇). Chin. Phys. B, 2024, 33(9): 096301.
[15] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
No Suggested Reading articles found!