Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 027801    DOI: 10.1088/1674-1056/adee89
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Brief investigations on CuxTa2-xO5 for thermoelectric and optical responses using density functional and experimental techniques

Laiba Ashraf1, Salma Waseem1, Maria Khalil2,3, Naveed Ahmad4, Pervaiz Ahmad5, Imen Kebaili6, and Murtaza Saleem7,†
1 Department of Physics, Lahore College for Women University, Lahore 54600, Pakistan;
2 Department of Physics, University of the Punjab, Quaid-e-Azam Campus, Lahore 54000, Pakistan;
3 Department of Physics, Mirpur University of Science and Technology (MUST), AJK, Mirpur, 10250, Pakistan;
4 Department of Chemical and Materials Engineering, College of Engineering, Northern Border University, Arar, Saudi Arabia;
5 Department of Physics, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, P. O. Box 173, Al-Kharj 11942, Saudi Arabia;
6 Departmentt of Physics, Faculty of Science, King Khalid University, P. O. Box 960, Abha, Saudi Arabia;
7 Department of Physics, SBASSE, Lahore University of Management Sciences, Lahore 54792, Pakistan
Abstract  Cu$_{x}$Ta$_{2-x}$O$_{5}$ compositions were investigated for advanced thermoelectric and optical applications, using both simulations and experimental approaches. Density functional theory calculations were performed before the experimental observations to predict the trends of various parameters. Crystal structure analysis confirmed the presence of the orthorhombic Ta$_{2}$O$_{5}$ phase in all the compositions. The composition and morphology demonstrated impurity-free contents with uniform and crack-free surfaces. Thermoelectric analysis depicted a decrease in Seebeck coefficient from 3.66 μV$\cdot$K$^{-1}$ to 1.91 μV$\cdot$K$^{-1}$ and an increase in the value of specific heat from 0.73 J$\cdot$K$^{-1}\cdot$kg$^{-1}$ to 11.6 J$\cdot$K$^{-1}\cdot$kg$^{-1}$ upon Cu incorporation in structure. The bandgap was found to reduce from 2.61 to 1.38 eV with Cu-induced electronic states. The real epsilon and static refractive index increased from 3.75 to 4.57 and from 1.93 to 2.11, respectively, with increment in Cu content. The enhanced parameters, focusing on the thermoelectric and optical responses, make these compositions potential candidates for advanced optoelectronic applications.
Keywords:  Ta$_{2}$O$_{5}$      DFT      electronic properties      thermoelectric properties      optical properties  
Received:  02 April 2025      Revised:  04 July 2025      Accepted manuscript online:  11 July 2025
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.50.Lw (Thermoelectric effects)  
  73.61.-r (Electrical properties of specific thin films)  
Fund: The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University, Saudi Arabia, for funding this study through the Large Groups Project (Grant No. RGP2/2/47). The authors extend their appreciation to the Deanship of Scientific Research at Northern Border University, Arar, KSA for funding this research work through project number NBU-FFR-2025-1902-02.
Corresponding Authors:  Murtaza Saleem     E-mail:  murtaza.saleem@lums.edu.pk

Cite this article: 

Laiba Ashraf, Salma Waseem, Maria Khalil, Naveed Ahmad, Pervaiz Ahmad, Imen Kebaili, and Murtaza Saleem Brief investigations on CuxTa2-xO5 for thermoelectric and optical responses using density functional and experimental techniques 2026 Chin. Phys. B 35 027801

[1] Kar K K 2020 Handbook of Nanocomposite Supercapacitor Materials II: Performance (Cham: Springer International Publishing AG)
[2] Danish Mohd, Pandey A, Ansari Mohd O and Jilani A 2017 J. Mater. Sci.: Mater. Electron. 28 6812
[3] Naveenraj S, Lee G J, Anandan S andWu J J 2015 Mater. Res. Bull. 67 20
[4] Li Q, Liang C, Tian Z, Zhang J, Zhang H and Cai W 2012 CrystEng- Comm 14 3236
[5] Delaportas D, Svarnas P and Alexandrou I 2010 J. Electrochem. Soc. 157 K138
[6] Dezelah, Wiedmann M K, Mizohata K, Baird R J, Niinistö L and Winter C H 2007 J. Am. Chem. Soc. 129 12370
[7] Agrawal M, Pich A, Gupta S, Zafeiropoulos N E, Simon P and Stamm M 2008 Langmuir 24 1013
[8] Devan R S, Ho W D, Chen C H, Shiu H W, Ho C H, Cheng C L, Wu S Y, Liou Y and Ma Y R 2009 Nanotechnology 20 445708
[9] Devan R S, Gao S Y, Ho W D, Lin J H, Ma Y R, Patil P S and Liou Y 2011 Appl. Phys. Lett. 98 133117
[10] Devan R S, Lin C L, Gao S Y, Cheng C L, Liou Y and Ma Y R 2011 Phys. Chem. Chem. Phys. 13 13441
[11] Sathasivam S, Williamson B A D, Kafizas A, Althabaiti S A, Obaid A Y, Basahel S N, Scanlon D O, Carmalt C J and Parkin I P 2017 J. Phys. Chem. C 121 202
[12] Miura K, Osawa T, Yokota Y, Suzuki T and Hanaizumi O 2014 Results Phys. 4 148
[13] Khalil M, Qureshi M T, Elaimi M A, Aamir L, Ahmad M, Saleem M and Saleem M 2024 Results Phys. 67 108041
[14] Le Y, Ma X, Xiao H, Luan C, Zhang B and Ma J 2023 Appl. Phys. Lett. 122 252103
[15] Suzuki T M, Saeki S, Sekizawa K, Kitazumi K, Takahashi N and Morikawa T 2017 Appl. Catal. B: Environmental 202 597
[16] Krishnan R R, Vinodkumar R, Rajan G, Gopchandran K G and Mahadevan Pillai V P 2010 Mater. Sci. Eng. B 174 150
[17] Araña J, Doña-Rodríguez J M, Melián J A H, Rendón E T and Díaz O G 2005 J. Photochem. Photobiol. A: Chemistry 174 7
[18] Manivel A, Naveenraj S, Sathish Kumar P S and Anandan S 2010 Sci. Adv. Mater. 2 51
[19] Liu C, Liu Z, Li J, Li Y, Han J, Wang Y, Liu Z and Ya J 2013 Microelectron. Eng. 103 12
[20] Martin P J, Bendavid A, Swain M, Netterfield R P, Kinder T J, Sainty W G, Drage D and Wielunski L 1994 Thin Solid Films 239 181
[21] Lee J S, Chang S J, Chen J F, Sun S C, Liu C H and Liaw U H 2003 Mater. Chem. Phys. 77 24
[22] Miura K, Osawa T, Yokota Y, Hossain Z and Hanaizumi O 2015 MSCE 03 47
[23] Khalil M, Bashir A, Ullah F, Ramay S M and Saleem M 2024 J. Electron. Mater. 53 1823
[24] Khalil M, Bashir A, Khalil U, Ullah F, Ramay SMand SaleemM2024 ECS J. Solid State Sci. Technol. 13 084003
[25] Geretovszky Z, Szörényi T, Stoquert J P and Boyd IW2004 Thin Solid Films textbf453–454 245
[26] Al-Kuhaili M F 2021 Mater. Chem. Phys. 257 123749
[27] Thapa R, Bhattarai B, KozickiMN, Subedi K N and Drabold D A 2020 Phys. Rev. Mater. 4 064603
[28] Hedhili F, Khan H, Sohail M, Rahman N, Khan R, Alahmad W, Albaqawi H S, Al-Shomar S M and Alsalmi O 2023 Molecules 28 4418
[29] Riaz S, Yaseen M, Butt M K, Mubashir S, Iqbal J, Altowyan A S, Dahshan A, Murtaza A, Iqbal M and Laref A 2021 Mater. Sci. Semicond. Process. 133 105976
[30] Soussi A, Ait Hssi A, Boujnah M, Boulkadat L, Abouabassi K, Asbayou A, Elfanaoui A, Markazi R, Ihlal A and Bouabid K 2021 J. Elec. Mater. 50 4497
[31] Khalil M, Bashir A, Ullah F, Ramay S M and Saleem M 2025 Mater. Sci. Eng.: B 319 118374
[32] Ghodsi F E, Tepehan F Z and Tepehan G G 1997 Thin Solid Films 295 11
[33] Valencia B C, Pérez W S and Osorio G J M 2018 TecnoLógicas. 21 43
[34] Thapliyal P, Panwar N S and Rao G M 2021 Superlattices Microstruct. 158 107008
[35] Gurylev V 2022 Mater. Today Sustainability 18 100131
[1] Interfacial design and thermoelectric properties of C3N4-C20 molecular junctions based on quantum interference
Shutao Hu(胡澍涛), Meng Qian(钱萌), Gang Zhang(张刚), and Bei Zhang(张蓓). Chin. Phys. B, 2025, 34(6): 068903.
[2] Insights to unusual antiferromagnetic behavior and exchange coupling interactions in Mn23C6
Ze-Kun Yu(于泽坤), Chao Zhou(周超), Kuo Bao(包括), Zhao-Qing Wang(王兆卿), En-Xuan Li(李恩萱), Jin-Ming Zhu(朱金铭), Yuan Qin(秦源), Yu-Han Meng(孟钰涵), Pin-Wen Zhu(朱品文), Qiang Tao(陶强), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(3): 037101.
[3] Possible orthorhombic phase of Ta2O5 under high pressures
Yan Gong(龚艳), Hui-Min Tang(唐慧敏), Yong Yang(杨勇), and Yoshiyuki Kawazoe. Chin. Phys. B, 2025, 34(11): 116104.
[4] Gate-field control of valley polarization in valleytronics
Ting-Ting Zhang(张婷婷), Yilin Han(韩依琳), Run-Wu Zhang(张闰午), and Zhi-Ming Yu(余智明). Chin. Phys. B, 2024, 33(6): 067303.
[5] Effect of strain on structure and electronic properties of monolayer C4N4
Hao Chen(陈昊), Ying Xu(徐瑛), Jia-Shi Zhao(赵家石), and Dan Zhou(周丹). Chin. Phys. B, 2024, 33(5): 057302.
[6] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[7] Microscopic mechanism of plasmon-mediated photocatalytic H2 splitting on Ag-Au alloy chain
Yuhui Song(宋玉慧), Yirui Lu(芦一瑞), Axin Guo(郭阿鑫), Yifei Cao(曹逸飞), Jinping Li(李金萍), Zhengkun Fu(付正坤), Lei Yan(严蕾), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(3): 033101.
[8] Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon
Xiao-Dong Liu(刘晓东), Qi-Liang Lu(卢其亮), and Qi-Quan Luo(罗其全). Chin. Phys. B, 2024, 33(2): 023601.
[9] Optical properties of La2O3 and HfO2 for radiative cooling via multiscale simulations
Lihao Wang(王礼浩), Wanglin Yang(杨旺霖), Zhongyang Wang(王忠阳), Hongchao Li(李鸿超), Hao Gong(公昊), Jingyi Pan(潘静怡), Tongxiang Fan(范同祥), and Xiao Zhou(周啸). Chin. Phys. B, 2024, 33(12): 127801.
[10] Adsorption structure of macrocyclic energetic molecule DOATF on Au(111)
Xiao Chang(常霄), Li Huang(黄立), Yixuan Gao(高艺璇), Changjiang Yu(于长江), Yun Cao(曹云), Long Lv(吕龙), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(9): 096802.
[11] Experimental and theoretical investigations of the photoelectrochemical and photo-Fenton properties of Co-doped FeOCl
Jin-Huan Ma(马金环), Zhi-Qiang Wei(魏智强), Mei-Jie Ding(丁梅杰),Ji-Wei Zhao(赵继威), and Cheng-Gong Lu(路承功). Chin. Phys. B, 2023, 32(9): 097202.
[12] On the origin of carrier localization in AlInAsSb digital alloy
Wen-Guang Zhou(周文广), Dong-Wei Jiang(蒋洞微), Xiang-Jun Shang(尚向军), Dong-Hai Wu(吴东海), Fa-Ran Chang(常发冉), Jun-Kai Jiang(蒋俊锴), Nong Li(李农), Fang-Qi Lin(林芳祁), Wei-Qiang Chen(陈伟强), Hong-Yue Hao(郝宏玥), Xue-Lu Liu(刘雪璐), Ping-Heng Tan(谭平恒), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(8): 088501.
[13] Enhanced xylene sensing performance of hierarchical flower-like Co3O4 via In doping
Jing Zhang(张京), Jianyu Ling(凌剑宇), Kuikun Gu(谷魁坤), Georgiy G. Levchenko, and Xiao Liang(梁霄). Chin. Phys. B, 2023, 32(6): 068104.
[14] Probing the effects of lithium doping on structures, properties, and stabilities of magnesium cluster anions
Xiao-Yi Zhang(张小义), Ya-Ru Zhao(赵亚儒), Hong-Xing Li(李红星), Kai-Ge Cheng(成凯格), Zi-Rui Liu(刘子锐), Zhi-Ping Liu(刘芷萍), and Hang He(何航). Chin. Phys. B, 2023, 32(6): 066102.
[15] High-pressure new phases of V-N compounds
Xu-Han Shi(时旭含), Zhi-Hui Li(李志慧), Yuanyuan Liu(刘媛媛), Yuanyuan Wang(王元元), Ran Liu(刘冉), Kuo Hu(胡阔), and Zhen Yao(姚震). Chin. Phys. B, 2023, 32(5): 056103.
No Suggested Reading articles found!