Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon
Xiao-Dong Liu(刘晓东)1, Qi-Liang Lu(卢其亮)1,†, and Qi-Quan Luo(罗其全)2,3
1 School of Physics and Material Science, Anhui University, Hefei 230601, China; 2 Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 3 Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
Abstract Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure. Superalkalis have low ionization energy. Doping a superalkali in cyclo[18]carbon is an effective method to improve the optical properties of the system because considerable electron transfer occurs. In this paper, the geometry, bonding properties, electronic structure, absorption spectrum, and nonlinear optical (NLO) properties of superalkaline O (, Na)-doped cyclo[18]carbon were studied by using density functional theory. O and the C rings are not coplanar. The C ring still exhibits alternating long and short bonds. The charge transfer between O and C forms stable [O][C] ionic complexes. CO (, Na) shows striking optical nonlinearity, i.e., their first- and second-order hyperpolarizability ( and ) increase considerably at nm and 1460 nm.
Fund: Project supported by the Natural Science Foundation of Anhui Province (Grant No. 1908085MA12) and the National Natural Science Foundation of China (Grant No. 21703222).
Corresponding Authors:
Qi-Liang Lu
E-mail: qllufd@vip.sina.com
Cite this article:
Xiao-Dong Liu(刘晓东), Qi-Liang Lu(卢其亮), and Qi-Quan Luo(罗其全) Structure, electronic, and nonlinear optical properties of superalkaline M3O (M = Li, Na) doped cyclo[18]carbon 2024 Chin. Phys. B 33 023601
[1] Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature318 162 [2] Iijima S 1991 Nature354 56 [3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science306 666 [4] Hoffmann R 1966 Tetrahcdron22 521 [5] Diederich F, Rubin Y, Knobler C B, Whetten R L, Schriver K E, Houk K N and Li Y 1989 Science245 1088 [6] Von Helden G, Gotts N G and Bowers M T 1993 Nature363 60 [7] Parasuk V, Almlof J and Feyereisen M W 1991 J. Am. Chem. Soc.113 1049 [8] Hutter J, Luethi H P and Diederich F 1994 J. Am. Chem. Soc.116 750 [9] Kaiser K, Scriven L M, Schulz F, Gawel P, Gross L and Anderson H L 2019 Science365 1299 [10] Scriven L M, Kaiser K, Schulz F, Sterling A J, Woltering S L, Gawel P, Christensen K E, Anderson H L and Gross L 2020 J. Am. Chem. Soc.142 12921 [11] Shi B, Yuan L, Tang T, Yuan Y and Tang Y 2020 Chem. Phys. Lett.741 136975 [12] Hussain S, Chen H, Zhang Z and Zheng H 2020 Chem. Comm.56 2336 [13] Li S X, Chen D L, Zhang Z P, Long Z W and Qin S J 2020 Acta Phys. Sin.69 103101 (in Chinese) [14] Baryshnikov G V, Valiev R R, Kuklin A V, Sundholm D and Ågren H 2019 J. Phys. Chem. Lett.10 6701 [15] Fedik N, Kulichenko M, Steglenko D and Boldyrev A I 2020 Chem. Comm.56 2711 [16] Liu Z, Lu T and Chen Q 2020 Carbon165 468 [17] Li M, Gao Z, Han Y, Zhao Y, Yuan K, Nagase S, Ehara M and Zhao X 2020 Phys. Chem. Chem. Phys.22 4823 [18] Dai C, Chen D and Zhu J 2020 Chem. Asian J.15 2187 [19] Charistos N D and Muñoz-Castro A 2020 Phys. Chem. Chem. Phys.22 9240 [20] Nandi A, Solel E and Kozuch S 2020 Chem. Eur. J.26 625 [21] Brémond É, Pérez-Jiménez Á J, Adamo C and Sancho-García J C 2019 J. Chem. Phys.151 211104 [22] Zou W, Tao Y and Kraka E 2020 J. Chem. Phys.152 154107 [23] Hong I, Ahn J, Shin H, Bae H, Lee H, Benali A and Kwon Y 2020 J. Phys. Chem. A124 3636 [24] Fang S and Hu Y H 2021 Carbon171 96 [25] Zhang L, Li H, Feng Y P and Shen L 2020 J. Phys. Chem. Lett.11 2611 [26] Pereira Z S and da Silva E Z 2020 J. Phys. Chem. A124 1152 [27] Liang Z, He T, An J, Xue H, Tang F and Fan D 2020 Int. J. Mod. Phys. B34 2050138 [28] Jiang Y, Mattioli E J, Calvaresi M and Wang Z 2020 Chem. Comm.56 11835 [29] Liu Z, Lu T and Chen Q 2020 Carbon165 461 [30] Hou X, Ren Y, Fu F and Tian X 2020 Comput. Theor. Chem.1187 112922 [31] Baryshnikov G V, Valiev R R, Nasibullin R T, Sundholm D, Kurten T and Ågren H 2020 J. Phys. Chem. A124 10849 [32] Valiev R R, Baryshnikov G V, Nasibullin R T, Sundholm D and Ågren H 2020 J. Phys. Chem. C124 21027 [33] Stasyuk A J, Stasyuk O A, Solá M and Voityuk A A 2020 Chem. Comm.56 352 [34] Liu Z, Lu T, Yuan A, Wang X, Chen Q and Yan X 2021 Chem Asian J16 2267 [35] Liu Z, Lu T and Chen Q 2021 Chem. Asian J.16 56 [36] Lu T, Liu Z and Chen Q 2022 Chin. Phys. B31 126101 [37] Heath J, O'brien S, Zhang Q, Liu Y, Curl R, Tittel F and Smalley R 1985 J. Am. Chem. Soc.107 7779 [38] Wan Z, Christian J F and Anderson S L 1992 Phys. Rev. Lett.69 1352 [39] Kubozono Y, Maeda H, Takabayashi Y, Hiraoka K, Nakai T, Kashino S, Emura, S, Ukita S and Sogabe T 1996 J. Am. Chem. Soc.118 6998 [40] Thilgen C 2012 Angew. Chem. Int. Ed.51 587 [41] Liu Z, Lu T and Chen Q 2021 Carbon171 514 [42] Lu Q L, Ling Y and Luo Q Q 2022 Chem. Phys. Lett.787 139221 [43] Liu Z, Wang X, Lu T, Yuan A and Yan X 2022 Carbon187 78 [44] Zhao Q 2022 J. Mol. Model. 28 210 [45] Chen J, Sun L and Zhang R 2021 Phys. Chem. Chem. Phys. 23 17545 [46] Wang X, Liu Z, Yan X, Lu T, Wang H, Xiong W and Zhao M 2022 Phys. Chem. Chem. Phys. 24 7466 [47] Ling Y, Lu Q L and Luo Q Q 2021 Eur. Phys. J. D 75 229 [48] Wu Q, Teng Z and Zhu W 2022 J. Mater. Sci. 57 10197 [49] Chen J L and Zhang R Q 2021 Adv. Theory Simul. 4 2100022 [50] Yang Y F and Cederbaum L S 2022 Chem. Phys. Lett.799 139554 [51] Bloodworth S, Sitinova G, Alom S, Vidal S, Bacanu G R, Elliott S J, Light M E, Herniman J M, Langley G J and Levitt M H 2019 Angew. Chem. Int. Ed.58 5038 [52] Yang Y F and Cederbaum L S 2021 Phys. Chem. Chem. Phys.23 11837 [53] Jiang Y, Wu Y, Deng J and Wang Z 2021 Phys. Chem. Chem. Phys.23 8817 [54] Lide D R 2008 CRC Handbook of Chemistry and Physics (CRC: Boca Raton) [55] Gutsev G L and Boldyrev A 1982 Chem. Phys. Lett.92 262 [56] Srivastava A K, Pandey S K and Misra N 2016 Chem. Phys. Lett.655-656 71 [57] Lin Z, Lu T and Ding X L 2017 J. Comput. Chem.38 1574 [58] Frisch M, Trucks G W, Schlegel H B, et al. 2009 Gaussian 09, revision D. 01. Gaussian, Inc., Wallingford CT [59] Mayer I 1983 Chem. Phys. Lett.97 270 [60] Matito E, Poater J, Solá M, Duran M and Salvador P 2005 J. Phys. Chem. A109 9904 [61] Wang Q Q, Li P, Gao T, Wan, H Y and Ao B Y 2016 Chin. Phys. B25 063102 [62] Jacobsen H 2009 J. Comput. Chem.30 1093 [63] Yang Y 2010 J. Phys. Chem. A114 13257 [64] Dale S G and Johnson E R 2018 J. Phys. Chem. A122 9371 [65] Lu T and Chen F 2012 J. Comput. Chem.33 580 [66] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. Model.14 33 [67] Peng S and Zheng S 2019 Int. J. Quantum Chem.119 e25942 [68] Jacquemin D, Perpete E A, Ciofini I and Adamo C 2011 Theor. Chem. Acc.128 127 [69] Malik M and Michalska D 2014 Spectrochim. Acta A Mol. Biomol. Spectrosc.125 431 [70] Thanthiriwatte K S, Hohenstein E G, Burns L A and Sherrill C D 2011 J. Chem. Theory Comput.7 88 [71] Murray J S and Politzer P 2011 Wiley Interdiscip. Rev. Comput. Mol. Sci.1 153 [72] Brinck T, Murray J S and Politzer P 1993 J. Chem. Phys.98 4305 [73] Tuer A, Krouglov S, Cisek R, Tokarz D and Barzda V 2011 J. Comput. Chem.32 1128
Epitaxial growth and air-stability of monolayer Cu2Te K Qian(钱凯), L Gao(高蕾), H Li(李航), S Zhang(张帅), J H Yan(严佳浩), C Liu(刘晨), J O Wang(王嘉鸥), T Qian(钱天), H Ding(丁洪), Y Y Zhang(张余洋), X Lin(林晓), S X Du(杜世萱), H-J Gao(高鸿钧). Chin. Phys. B, 2020, 29(1): 018104.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.