INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
On the origin of carrier localization in AlInAsSb digital alloy |
Wen-Guang Zhou(周文广)1,2, Dong-Wei Jiang(蒋洞微)1,2, Xiang-Jun Shang(尚向军)1,2, Dong-Hai Wu(吴东海)1,2, Fa-Ran Chang(常发冉)3, Jun-Kai Jiang(蒋俊锴)1,2, Nong Li(李农)1,2, Fang-Qi Lin(林芳祁)1,2, Wei-Qiang Chen(陈伟强)1,2, Hong-Yue Hao(郝宏玥)1,2, Xue-Lu Liu(刘雪璐)1,2, Ping-Heng Tan(谭平恒)1,2, Guo-Wei Wang(王国伟)1,2,†, Ying-Qiang Xu(徐应强)1,2,‡, and Zhi-Chuan Niu(牛智川)1,2,§ |
1. State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; 2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China; 3. School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China |
|
|
Abstract We compared the photoluminescence (PL) properties of AlInAsSb digital alloy samples with different periods grown on GaSb (001) substrates by molecular beam epitaxy. Temperature-dependent S-shape behavior is observed and explained using a thermally activated redistribution model within a Gaussian distribution of localized states. There are two different mechanisms for the origin of the PL intensity quenching for the AlInAsSb digital alloy. The high-temperature activation energy E1 is positively correlated with the interface thickness, whereas the low-temperature activation energy E2 is negatively correlated with the interface thickness. A quantitative high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) study shows that the interface quality improves as the interface thickness increases. Our results confirm that E1 comes from carrier trapping at a state in the InSb interface layer, while E2 originates from the exciton binding energy due to the roughness of the AlAs interface layer.
|
Received: 10 November 2022
Revised: 21 April 2023
Accepted manuscript online: 24 April 2023
|
PACS:
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
68.65.Cd
|
(Superlattices)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
68.35.Ct
|
(Interface structure and roughness)
|
|
Fund: The authors thank Professor Yuan Yao (the Institute of Physics, Chinese Academy of Sciences) for his help in HAADF--STEM testing and analysis.Project supported by the National Key Technologies Research and Development Program of China (Grant Nos.2019YFA0705203, 2019YFA070104, 2018YFA0209102, and 2018YFA0209104), the Major Program of the National Natural Science Foundation of China (Grant Nos.61790581, 62004189, and 61274013), the Aeronautical Science Foundation of China (Grant No.20182436004), the Key Research Program of the Chinese Academy of Sciences (Grant No.XDPB22), and the Research Foundation for Advanced Talents of the Chinese Academy of Sciences (Grant No.E27RBB03). |
Corresponding Authors:
Guo-Wei Wang, Ying-Qiang Xu, Zhi-Chuan Niu
E-mail: wangguowei@semi.ac.cn;yingqxu@semi.ac.cn;zcniu@semi.ac.cn
|
Cite this article:
Wen-Guang Zhou(周文广), Dong-Wei Jiang(蒋洞微), Xiang-Jun Shang(尚向军), Dong-Hai Wu(吴东海), Fa-Ran Chang(常发冉), Jun-Kai Jiang(蒋俊锴), Nong Li(李农), Fang-Qi Lin(林芳祁), Wei-Qiang Chen(陈伟强), Hong-Yue Hao(郝宏玥), Xue-Lu Liu(刘雪璐), Ping-Heng Tan(谭平恒), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川) On the origin of carrier localization in AlInAsSb digital alloy 2023 Chin. Phys. B 32 088501
|
[1] Rojas-Ramirez J.S, Wang S, Contreras-Guerrero R, Caro M, Bhatnagar K, Holland M, Oxland R, Doornbos G, Passlack M, Diaz C H and Droopad R 2015 J. Cryst. Growth 425 33 [2] Tournet J, Rouillard Y and Tournié E 2017 J. Cryst. Growth 477 72 [3] Xie J, Zhang Z, Huang M, Li J, Jia F and Zhao Y 2022 Chin. Phys. B 31 090701 [4] Campbell J C 2022 IEEE J. Sel. Top. Quantum Electron. 28 3800911 [5] Woodson M E, Ren M, Maddox S J, Chen Y J, Bank S R and Campbell J C 2016 Appl. Phys. Lett. 108 081102 [6] Ren M, Maddox S J, Woodson M E, Chen Y J, Bank S R and Campbell J C 2017 J. Light. Technol. 35 2380 [7] March S D, Jones A H, Campbell J C and Bank S R 2021 Nat. Photon. 15 468 [8] Vaughn L G 2006 Mid-infrared multiple quantum well lasers using digitally-grown aluminum indium arsenic antimonide barriers and strained indium arsenic antimonide wells, Ph. D. Dissertation (New Mexico: The University of New Mexico) [9] Lyu Y X, Han X, Sun Y Y, Jiang Z, Guo C Y, Xiang W, Dong Y N, Cui J, Yao Y, Jiang D W, Wang G W, Xu Y Q and Niu Z C 2018 J. Cryst. Growth 482 70 [10] Maddox S J, March S D and Bank S R 2016 Cryst. Growth Des. 16 3582 [11] Yuan Y, Rockwell A K, Peng Y W, Zheng J Y, March S D, Jones A H, Ren M, Bank S R and Campbell J C 2019 J. Light. Technol. 37 3647 [12] Lee S, Jo H J, Mathews S, Simon J A, Ronningen T J, Kodati S H, Fink D R, Kim J S, Winslow M, Grein C H, Jones A H, Campbell J C and Krishna S 2019 Appl. Phys. Lett. 115 211601 [13] Li R, Xu M S, Wang P, Wang C X, Qu S D, Shi K J, Wei Y H, Xu X G and Ji Z W 2021 Chin. Phys. B 30 047801 [14] Nuytten T, Hayne M, Bansal B, Liu H Y, Hopkinson M and Moshchalkov V V 2011 Phys. Rev. B 84 045302 [15] Steenbergen E H, Massengale J A, Ariyawansa G and Zhang Y H 2016 J. Lumin. 178 451 [16] Varshni Y P 1967 Physica 34 149 [17] Bertru N, Baranov A N, Cuminal Y, Boissier G, Alibert C, Joullie A and Lambert B 1999 J. Appl. Phys. 85 1989 [18] Lin Z Y, Liu S, Steenbergen E H and Zhang Y H 2015 Appl. Phys. Lett. 107 201107 [19] Pepper B, Soibel A, Ting D, Hill C, Khoshakhlagh A, Fisher A, Keo S and Gunapala S 2019 Infrared Phys. Technol. 99 64 [20] Chang F R, Hao R T, Qi T T, Zhao Q C, Liu X X, Li Y, Gu K, Guo J, Wang G W, Xu Y Q and Niu Z C 2019 Chin. Phys. B 28 028503 [21] Viña L, Logothetidis S and Cardona M 1984 Phys. Rev. B 30 1979 [22] Cho Y H, Gainer G H, Fischer A J, Song J J, Keller S, Mishra U K and DenBaars S P 1998 Appl. Phys. Lett. 73 1370 [23] Li Q, Xu S J, Cheng W C, Xie M H, Tong S Y, Che C M and Yang H 2001 Appl. Phys. Lett. 79 1810 [24] Pecharromán-Gallego R, Martin R W and Watson I M 2004 J. Phys. Appl. Phys. 37 2954 [25] Maros A, Faleev N N, Bertoni M I, Honsberg C B and King R R 2016 J. Appl. Phys. 120 183104 [26] Yu J J, Zhao Y N, Li S Q, Yao J S, Yao L, Ning J Q, Jiang Y C, Lu H, Chen B L and Zheng C C 2022 J. Lumin. 249 119009 [27] Li Q, Xu S J, Xie M H and Tong S Y 2005 Europhys. Lett. 71 994 [28] O'Donnell K P and Chen X 1991 Appl. Phys. Lett. 58 2924 [29] Hopfield J J 1959 J. Phys. Chem. Solids 10 110 [30] Lourenço S A, Dias I F L, Duarte J L, Laureto E, Aquino V M and Harmand J C 2007 Braz. J. Phys. 37 1212 [31] Rudin S, Reinecke T L and Segall B 1990 Phys. Rev. B 42 11218 [32] Xing J L, Zhang Y, Liao Y P, Wang J, Xiang W, Hao H Y, Xu Y Q and Niu Z C 2014 J. Appl. Phys. 116 123107 [33] Hugues M, Damilano B, Duboz J Y and Massies J 2007 Phys. Rev. B 75 115337 [34] Thoma J, Liang B L, Lewis L, Hegarty S P, Huyet G and Huffaker D L 2013 Appl. Phys. Lett. 102 053110 [35] Georgiev N and Mozume T 2001 J. Appl. Phys. 89 1064 [36] Tuttle G, Kroemer H and English J H 1990 J. Appl. Phys. 67 3032 [37] Anderson P W 1958 Phys. Rev. 109 1492 [38] Holthaus M, Ristow G H and Hone D W 1995 Phys. Rev. Lett. 75 3914 [39] Kroemer H 1992 J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 10 1769 [40] Shaw M J 1998 J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 16 1794 [41] Shen J, Goronkin H, Dow J D and Ren S Y 1995 J. Appl. Phys. 77 1576 [42] Zhang Q, Zhang L Y, Jin C H, Wang Y M and Lin F 2019 Ultramicroscopy 202 114 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|