Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 088501    DOI: 10.1088/1674-1056/accf7b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

On the origin of carrier localization in AlInAsSb digital alloy

Wen-Guang Zhou(周文广)1,2, Dong-Wei Jiang(蒋洞微)1,2, Xiang-Jun Shang(尚向军)1,2, Dong-Hai Wu(吴东海)1,2, Fa-Ran Chang(常发冉)3, Jun-Kai Jiang(蒋俊锴)1,2, Nong Li(李农)1,2, Fang-Qi Lin(林芳祁)1,2, Wei-Qiang Chen(陈伟强)1,2, Hong-Yue Hao(郝宏玥)1,2, Xue-Lu Liu(刘雪璐)1,2, Ping-Heng Tan(谭平恒)1,2, Guo-Wei Wang(王国伟)1,2,†, Ying-Qiang Xu(徐应强)1,2,‡, and Zhi-Chuan Niu(牛智川)1,2,§
1. State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2. College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3. School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China
Abstract  We compared the photoluminescence (PL) properties of AlInAsSb digital alloy samples with different periods grown on GaSb (001) substrates by molecular beam epitaxy. Temperature-dependent S-shape behavior is observed and explained using a thermally activated redistribution model within a Gaussian distribution of localized states. There are two different mechanisms for the origin of the PL intensity quenching for the AlInAsSb digital alloy. The high-temperature activation energy E1 is positively correlated with the interface thickness, whereas the low-temperature activation energy E2 is negatively correlated with the interface thickness. A quantitative high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) study shows that the interface quality improves as the interface thickness increases. Our results confirm that E1 comes from carrier trapping at a state in the InSb interface layer, while E2 originates from the exciton binding energy due to the roughness of the AlAs interface layer.
Keywords:  photoluminescence spectroscopy      optical properties      AlInAsSb      digital alloy  
Received:  10 November 2022      Revised:  21 April 2023      Accepted manuscript online:  24 April 2023
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  68.65.Cd (Superlattices)  
  78.55.-m (Photoluminescence, properties and materials)  
  68.35.Ct (Interface structure and roughness)  
Fund: The authors thank Professor Yuan Yao (the Institute of Physics, Chinese Academy of Sciences) for his help in HAADF--STEM testing and analysis.Project supported by the National Key Technologies Research and Development Program of China (Grant Nos.2019YFA0705203, 2019YFA070104, 2018YFA0209102, and 2018YFA0209104), the Major Program of the National Natural Science Foundation of China (Grant Nos.61790581, 62004189, and 61274013), the Aeronautical Science Foundation of China (Grant No.20182436004), the Key Research Program of the Chinese Academy of Sciences (Grant No.XDPB22), and the Research Foundation for Advanced Talents of the Chinese Academy of Sciences (Grant No.E27RBB03).
Corresponding Authors:  Guo-Wei Wang, Ying-Qiang Xu, Zhi-Chuan Niu     E-mail:  wangguowei@semi.ac.cn;yingqxu@semi.ac.cn;zcniu@semi.ac.cn

Cite this article: 

Wen-Guang Zhou(周文广), Dong-Wei Jiang(蒋洞微), Xiang-Jun Shang(尚向军), Dong-Hai Wu(吴东海), Fa-Ran Chang(常发冉), Jun-Kai Jiang(蒋俊锴), Nong Li(李农), Fang-Qi Lin(林芳祁), Wei-Qiang Chen(陈伟强), Hong-Yue Hao(郝宏玥), Xue-Lu Liu(刘雪璐), Ping-Heng Tan(谭平恒), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川) On the origin of carrier localization in AlInAsSb digital alloy 2023 Chin. Phys. B 32 088501

[1] Rojas-Ramirez J.S, Wang S, Contreras-Guerrero R, Caro M, Bhatnagar K, Holland M, Oxland R, Doornbos G, Passlack M, Diaz C H and Droopad R 2015 J. Cryst. Growth 425 33
[2] Tournet J, Rouillard Y and Tournié E 2017 J. Cryst. Growth 477 72
[3] Xie J, Zhang Z, Huang M, Li J, Jia F and Zhao Y 2022 Chin. Phys. B 31 090701
[4] Campbell J C 2022 IEEE J. Sel. Top. Quantum Electron. 28 3800911
[5] Woodson M E, Ren M, Maddox S J, Chen Y J, Bank S R and Campbell J C 2016 Appl. Phys. Lett. 108 081102
[6] Ren M, Maddox S J, Woodson M E, Chen Y J, Bank S R and Campbell J C 2017 J. Light. Technol. 35 2380
[7] March S D, Jones A H, Campbell J C and Bank S R 2021 Nat. Photon. 15 468
[8] Vaughn L G 2006 Mid-infrared multiple quantum well lasers using digitally-grown aluminum indium arsenic antimonide barriers and strained indium arsenic antimonide wells, Ph. D. Dissertation (New Mexico: The University of New Mexico)
[9] Lyu Y X, Han X, Sun Y Y, Jiang Z, Guo C Y, Xiang W, Dong Y N, Cui J, Yao Y, Jiang D W, Wang G W, Xu Y Q and Niu Z C 2018 J. Cryst. Growth 482 70
[10] Maddox S J, March S D and Bank S R 2016 Cryst. Growth Des. 16 3582
[11] Yuan Y, Rockwell A K, Peng Y W, Zheng J Y, March S D, Jones A H, Ren M, Bank S R and Campbell J C 2019 J. Light. Technol. 37 3647
[12] Lee S, Jo H J, Mathews S, Simon J A, Ronningen T J, Kodati S H, Fink D R, Kim J S, Winslow M, Grein C H, Jones A H, Campbell J C and Krishna S 2019 Appl. Phys. Lett. 115 211601
[13] Li R, Xu M S, Wang P, Wang C X, Qu S D, Shi K J, Wei Y H, Xu X G and Ji Z W 2021 Chin. Phys. B 30 047801
[14] Nuytten T, Hayne M, Bansal B, Liu H Y, Hopkinson M and Moshchalkov V V 2011 Phys. Rev. B 84 045302
[15] Steenbergen E H, Massengale J A, Ariyawansa G and Zhang Y H 2016 J. Lumin. 178 451
[16] Varshni Y P 1967 Physica 34 149
[17] Bertru N, Baranov A N, Cuminal Y, Boissier G, Alibert C, Joullie A and Lambert B 1999 J. Appl. Phys. 85 1989
[18] Lin Z Y, Liu S, Steenbergen E H and Zhang Y H 2015 Appl. Phys. Lett. 107 201107
[19] Pepper B, Soibel A, Ting D, Hill C, Khoshakhlagh A, Fisher A, Keo S and Gunapala S 2019 Infrared Phys. Technol. 99 64
[20] Chang F R, Hao R T, Qi T T, Zhao Q C, Liu X X, Li Y, Gu K, Guo J, Wang G W, Xu Y Q and Niu Z C 2019 Chin. Phys. B 28 028503
[21] Viña L, Logothetidis S and Cardona M 1984 Phys. Rev. B 30 1979
[22] Cho Y H, Gainer G H, Fischer A J, Song J J, Keller S, Mishra U K and DenBaars S P 1998 Appl. Phys. Lett. 73 1370
[23] Li Q, Xu S J, Cheng W C, Xie M H, Tong S Y, Che C M and Yang H 2001 Appl. Phys. Lett. 79 1810
[24] Pecharromán-Gallego R, Martin R W and Watson I M 2004 J. Phys. Appl. Phys. 37 2954
[25] Maros A, Faleev N N, Bertoni M I, Honsberg C B and King R R 2016 J. Appl. Phys. 120 183104
[26] Yu J J, Zhao Y N, Li S Q, Yao J S, Yao L, Ning J Q, Jiang Y C, Lu H, Chen B L and Zheng C C 2022 J. Lumin. 249 119009
[27] Li Q, Xu S J, Xie M H and Tong S Y 2005 Europhys. Lett. 71 994
[28] O'Donnell K P and Chen X 1991 Appl. Phys. Lett. 58 2924
[29] Hopfield J J 1959 J. Phys. Chem. Solids 10 110
[30] Lourenço S A, Dias I F L, Duarte J L, Laureto E, Aquino V M and Harmand J C 2007 Braz. J. Phys. 37 1212
[31] Rudin S, Reinecke T L and Segall B 1990 Phys. Rev. B 42 11218
[32] Xing J L, Zhang Y, Liao Y P, Wang J, Xiang W, Hao H Y, Xu Y Q and Niu Z C 2014 J. Appl. Phys. 116 123107
[33] Hugues M, Damilano B, Duboz J Y and Massies J 2007 Phys. Rev. B 75 115337
[34] Thoma J, Liang B L, Lewis L, Hegarty S P, Huyet G and Huffaker D L 2013 Appl. Phys. Lett. 102 053110
[35] Georgiev N and Mozume T 2001 J. Appl. Phys. 89 1064
[36] Tuttle G, Kroemer H and English J H 1990 J. Appl. Phys. 67 3032
[37] Anderson P W 1958 Phys. Rev. 109 1492
[38] Holthaus M, Ristow G H and Hone D W 1995 Phys. Rev. Lett. 75 3914
[39] Kroemer H 1992 J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 10 1769
[40] Shaw M J 1998 J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 16 1794
[41] Shen J, Goronkin H, Dow J D and Ren S Y 1995 J. Appl. Phys. 77 1576
[42] Zhang Q, Zhang L Y, Jin C H, Wang Y M and Lin F 2019 Ultramicroscopy 202 114
[1] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[2] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[3] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[4] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[5] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[6] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[7] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[8] Strain-tunable electronic and optical properties of h-BN/BC3 heterostructure with enhanced electron mobility
Zhao-Yong Jiao(焦照勇), Yi-Ran Wang(王怡然), Yong-Liang Guo(郭永亮), and Shu-Hong Ma(马淑红). Chin. Phys. B, 2021, 30(7): 076801.
[9] Gas sensor using gold doped copper oxide nanostructured thin films as modified cladding fiber
Hussein T. Salloom, Rushdi I. Jasim, Nadir Fadhil Habubi, Sami Salman Chiad, M Jadan, and Jihad S. Addasi. Chin. Phys. B, 2021, 30(6): 068505.
[10] Low-dimensional phases engineering for improving the emission efficiency and stability of quasi-2D perovskite films
Yue Wang(王月), Zhuang-Zhuang Ma(马壮壮), Ying Li(李营), Fei Zhang(张飞), Xu Chen(陈旭), and Zhi-Feng Shi (史志锋). Chin. Phys. B, 2021, 30(6): 067802.
[11] Effects of substitution of group-V atoms for carbon or silicon atoms on optical properties of silicon carbide nanotubes
Ying-Ying Yang(杨莹莹), Pei Gong(龚裴), Wan-Duo Ma(马婉铎), Rui Hao(郝锐), and Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2021, 30(6): 067803.
[12] Determination of charge-compensated C3v (II) centers for Er 3+ ions in CdF2 and CaF2 crystals
Rui-Peng Chai(柴瑞鹏), Dan-Hui Hao(郝丹辉), Dang-Li Gao(高当丽), and Qing Pang(庞庆). Chin. Phys. B, 2021, 30(3): 037601.
[13] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[14] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[15] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
No Suggested Reading articles found!