Special Issue:
SPECIAL TOPIC — Optical field manipulation
|
SPECIAL TOPIC—Optical field manipulation |
Prev
Next
|
|
|
Plasmon-induced nonlinear response on gold nanoclusters |
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾)†, Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙)‡ |
School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China |
|
|
Abstract The plasmon-induced nonlinear response has attracted great attention in micro-nano optics and optoelectronics applications, yet the underlying microscopic mechanism remains elusive. In this study, the nonlinear response of gold nanoclusters when exposed to a femtosecond laser pulse was investigated using time-dependent density functional theory. It was observed that the third-order tunneling current was augmented in plasmonic dimers, owing to a greater number of electrons in the dimer being excited from occupied to unoccupied states. These findings provide profound theoretical insights and enable the realization of accurate regulation and control of nonlinear effects induced by plasmons at the atomic level.
|
Received: 11 October 2023
Revised: 29 December 2023
Accepted manuscript online: 04 January 2024
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
31.15.ee
|
(Time-dependent density functional theory)
|
|
36.40.Vz
|
(Optical properties of clusters)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2020YFA0211300 and 2021YFA1201500), the National Natural Science Foundation of China (Grant Nos. U22A6005, 92150110, 12074237, and 12304426), the Natural Science Foundation of Shaanxi Province (Grant No. 2024JC-JCQN-07), the Fundamental Science Foundation of Shaanxi (Grant No. 22JSZ010), and the Fundamental Research Funds for Central Universities (Grant Nos. GK202201012 and GK202308001). |
Corresponding Authors:
Lei Yan, Zhenglong Zhang
E-mail: yanlei@snnu.edu.cn;zlzhang@snnu.edu.cn
|
Cite this article:
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙) Plasmon-induced nonlinear response on gold nanoclusters 2024 Chin. Phys. B 33 044204
|
[1] Xiao S, Qin M, Duan J, Wu F and Liu T 2022 Phys. Rev. B 105 195440 [2] Koulouklidis A D, Gollner C, Shumakova V, Fedorov V Y, Pugzlys A, Baltuska A and Tzortzakis S 2020 Nat. Commun. 11 292 [3] Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H and Notomi M 2019 Nat. Photon. 14 37 [4] Hafez H A, Chai X, Ibrahim A, Mondal S, Férachou D, Ropagnol X and Ozaki T 2016 J. Opt. 18 093004 [5] Nitiss E, Hu J, Stroganov A and Brés C S 2022 Nat. Photon. 16 134 [6] Provazza J, Tempelaar R and Coker D F 2021 J. Chem. Phys. 155 014108 [7] Dai Y, Wang Y, Das S, Xue H, Bai X, Hulkko E, Zhang G, Yang X, Dai Q and Sun Z 2020 ACS Nano 14 8442 [8] Li G C, Lei D Y, Qiu M, Jin W, Lan S and Zayats A V 2021 Nat. Commun. 12 4326 [9] Li Y, Song Y, Zhang X, Liu T, Xu T, Wang H, Jiang D E and Jin R 2022 J. Am. Chem. Soc. 144 12381 [10] Lien M B, Kim J Y, Han M G, Chang Y C, Chang Y C, Ferguson H J, Zhu Y, Herzing A A, Schotland J C, Kotov N A and Norris T B 2017 ACS Nano 11 5925 [11] Singh D J, Krakauer H, Haas C and Liu A Y 1992 Phys. Rev. B 46 13065 [12] Kauranen M and Zayats A V 2012 Nat. Photon. 6 737 [13] Frischwasser K, Cohen K, Tsesses S, Dolev S, Rosenblatt G and Bartal G 2022 Phys. Rev. Lett. 128 103901 [14] Marinica D C, Kazansky A K, Nordlander P, Aizpurua J and Borisov A G 2012 Nano Lett. 12 1333 [15] Bonafé F P, Aradi B, Guan M, Douglas-Gallardo O A, Lian C, Meng S, Frauenheim T and S'anchez C G 2017 Nanoscale 9 12391 [16] Choi Y M, Roh S H, Kwak E, Choi D-G, Kwon S J, Kim J K and Park J H 2023 Chem. Eng. J. 461 142082 [17] Frontiera R R, Henry A I, Gruenke N L and Van Duyne R P 2011 J. Phys. Chem. Lett. 2 1199 [18] Lin X R, You L X, He Q L, Zhuang W, Huang B Z and Zheng D X 2023 Electroanalysis 35 e202300001 [19] Gao S 2015 J. Chem. Phys. 142 234701 [20] Ponkratova E, Ageev E, Komissarenko F, Koromyslov S, Kudryashov D, Mukhin I, Veiko V, Kuchmizhak A and Zuev D 2021 Photonics 8 121 [21] Chen Q, Chen W, Miao B and Fan J 2022 J. Am. Ceram. Soc. 105 4784 [22] Zhang Y, Grady N K, Ayala-Orozco C and Halas N J 2011 Nano Lett. 11 5519 [23] Hanke T, Cesar J, Knittel V, Trugler A, Hohenester U, Leitenstorfer A and Bratschitsch R 2012 Nano Lett. 12 992 [24] Goulielmakis E and Brabec T 2022 Nat. Photon. 16 411 [25] Castro A, Appel H, Oliveira M, Rozzi C A, Andrade X, Lorenzen F, Marques M A L, Gross E K U and Rubio A 2006 Phys. Stat. Sol. (b) 243 2465 [26] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566 [27] Troullier N and Martins J L 1991 Phys. Rev. B 43 1993 [28] Sorensen C M and Fischbach D J 2000 Opt. Commun. 173 145 [29] Yan L, Guan M and Meng S 2018 Nanoscale 10 8600 [30] Li C, Lu X, Srivastava A, Storm S D, Gelfand R, Pelton M, Sukharev M and Harutyunyan H 2021 Nano Lett. 21 1599 [31] Ma J, Wang Z and Wang L W 2015 Nat. Commun. 6 10107 [32] Townsend E and Bryant G W 2014 J. Opt. 16 114022 [33] Guan M, Yan L, Hu S, Zhang Y, Chen D and Meng S 2023 Phys. Rev. B 107 075426 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|