Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 097202    DOI: 10.1088/1674-1056/acae7f
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Experimental and theoretical investigations of the photoelectrochemical and photo-Fenton properties of Co-doped FeOCl

Jin-Huan Ma(马金环)1, Zhi-Qiang Wei(魏智强)1,2,†, Mei-Jie Ding(丁梅杰)1, Ji-Wei Zhao(赵继威)1, and Cheng-Gong Lu(路承功)1
1 School of Science, Lanzhou University of Technology, Lanzhou 730050, China;
2 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
Abstract  For the first time, two-dimensional FeOCl (Fe1-xCoxOCl) doped with Co was successfully applied to the photocatalytic and photo-Fenton degradation of Rhodamine B (RhB). The photocatalytic and photo-Fenton experiments showed that the degradation rates of RhB by Fe0.94Co0.06OCl are 82.6% and 98.2% within 50 min under neutral solution, room temperature and visible light. The inclusion of Co resulted in lattice imperfections on the surface of FeOCl, which was advantageous for the photogenerated electron-hole pair separation efficiency (consistent with the density functional theory calculation). Moreover, the RhB removal rate decreased from 98% to 82% during five successive cycles, showing good structural stability. Finally, based on the radical capture experiment, a potential mechanism for RhB degradation by Fe1-xCoxOCl catalyst was proposed. The idea of a synergistic mechanism for Fe1-xCoxOCl also offers a fresh concept for catalysts used in doping modification.
Keywords:  Co doped FeOCl      photo-Fenton      photocatalytic      DFT calculations  
Received:  24 October 2022      Revised:  19 December 2022      Accepted manuscript online:  27 December 2022
PACS:  72.80.Ga (Transition-metal compounds)  
  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  68.37.Lp (Transmission electron microscopy (TEM))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52268042), the Natural Science Foundation of Gansu Province, China (Grant No. 22JR5RA253), and HongLiu First-Class Disciplines Development Program of Lanzhou University of Technology.
Corresponding Authors:  Zhi-Qiang We     E-mail:  qianweizuo@163.com

Cite this article: 

Jin-Huan Ma(马金环), Zhi-Qiang Wei(魏智强), Mei-Jie Ding(丁梅杰),Ji-Wei Zhao(赵继威), and Cheng-Gong Lu(路承功) Experimental and theoretical investigations of the photoelectrochemical and photo-Fenton properties of Co-doped FeOCl 2023 Chin. Phys. B 32 097202

[1] Ashouri M J and Rafei M 2018 Environ. Sci. Poll. Res. 25 17590
[2] Huang S P, Wei Z Q, Ding M J, Li C and Lu Q 2021 Opt. Mater. 111 110643
[3] Li C, Wei Z Q, Lu Q, Ma J H and Li L 2022 Environ. Sci. Poll. Res. 29 34930
[4] Yang Y, Li X, Zhou C Y, Xiong W P and Zeng G M 2020 Water Research 184 116200
[5] Zamanzad-Ghavidel S, Sobhani R, Etaei S, Hosseini Z and Montaseri M 2021 Environ. Monitor. Assess. 193 463
[6] Zhang D, Zhu M Y, Yu J G, Meng H W and Jiao F P 2017 T. Nonferr. Metal. Soc. 27 2673
[7] Brillas E and Garcia-Segura S 2020 Sep. Purif. Technol. 237 116337
[8] Jiang Y N, Xiong Z K, Huang J B, Yan F, Yao G and Lai B 2022 Chin. Chem. Lett. 33 415
[9] Zhao W, Wei Z, Ma L, Liang J and Zhang X 2019 Materials 12 582
[10] Li H B, Huang G Y, Zhang J, Fu S H, Wang T G and Liao H W 2017 T. Nonferr. Metal. Soc. 27 1127
[11] Zheng Y S, Qiu S, Deng F X, Zhu Y S, Ma F and Li GJ 2021 Environ. Tech. 42 1996
[12] Ma J H, Wei Z Q, Li L, Ma L, Li C and Huang S P 2021 Desalin. Water Treat. 231 287
[13] Tong X, Jia W J, Li Y M, Yao T J, Wu J and Yang M 2019 J. Taiwan Inst. Chem. E 102 92
[14] Sales H B, Menezes R R, Neves G A, de Souza J J N and Ferreira J M 2020 Sustainability 12 7393
[15] Li L, Lai C, Huang F L, Cheng M and Zeng G M 2019 Water Res. 160 238
[16] Fu S M, Li G S, Wen X, Fan C M and Liu J X 2020 Trans. Nonferr. Metals Soc. China 30 765
[17] Xu Q L, Zhang L Y, Cheng B, Fan J J and Yu J G 2020 Chem 6 1543
[18] Yang J, Huang Z, Yang B D, Lin H and Qin L Z 2021 J. Mater. Sci. 56 3268
[19] Xing M Y, Xu W J, Dong C C, Bai Y C and Zeng J B 2018 Chem 4 1359
[20] Zhang B F, Zhang L, Akiyama K, Bingham P A, Zhou Y T and Kubuki S 2021 Acs Appl. Mater. Inter. 13 22694
[21] Liu F, Yao H, Sun S B, Tao W J, Wei T and Sun P Z 2020 Chem. Eng. J. 402 125477
[22] Guo T, Wang K, Zhang G K and Wu X Y 2019 Appl. Surf. Sci. 469 331
[23] Yang L, Li L, Liu Z T, Lai C and Yang X F 2022 Chemosphere 294 133736
[24] Yang M, Liu J, Xu H, Pei Y and Jiang C 2022 ChemPhysMater 1 155
[25] Sun B, He D, Wang H B, Liu J C and Ke Z J 2021 Chin. Phys. B 30 106102
[26] Ji X X, Wang H F and Hu P J 2019 Rare. Metal. 38 783
[27] Setyawan W and Curtarolo S 2010 Com. Mater. Sci. 49 299
[28] Zhao J Z, Ji M X, Di J, Zhang Y and He M Q 2020 J. Photoch. Photobio. A 391 112343
[29] Chen Y Q, Liu Y P, Zhang L, Xie P C and Wang Z P 2018 J. Hazard Mater. 353 18
[30] Shi X H, Cui C, Zhang L, Zhang J and Liu GD 2019 New J. Chem. 43 16273
[31] Wang L, Yang H, Kang L, Wu M and Yang Y 2022 Chemosphere 296 134039
[32] Zhang J, Liu G D and Liu S J 2018 New J. Chem. 42 6896
[33] Sun S B, Yao H, Fu W Y, Liu F, Wang X W and Zhang W 2021 J. Environ. Chem. Eng. 9 104501
[34] Nguyen T B, Huang C P, Doong R A, Chen C W and Dong C D 2021 J. Hazard. Mater. 401 123326
[35] Asadzadeh-Khaneghah S, Habibi-Yangjeh A, Seifzadeh D, Chand H, Krishnan V 2021 Colloid. Surface A 617 126424
[36] Jiang L L, Zhang L, Cui C, Zhang J, Liu G D and Song J J 2019 Mater. Lett. 240 30
[37] Liu X, Zhang W Y, Peng M G, Zhai G Q, Hu L C and Mao L Q 2021 Chem. Eng. J 426 131353
[38] Chen M D, Xu H M, Wang Q, Li D Y and Xia D S 2018 Chem. Phys. Lett. 706 415
[39] Wei J S, Feng X, Hu X F, Yang J H, Yang C and Liu B Y 2021 Colloid. Surf. A 631 127754
[40] Zhang J, Yang M X, Lian Y, Zhong M L and Sha J Q 2019 Dalton. T. 48 3476
[41] Zhong X, Zhang K X, Wu D, Ye X Y, Huang W and Zhou B X 2020 Chem. Eng. J. 383 123148
[42] Kumar A and Luxmi V 2020 Optik 216 164804
[43] Gao J, Liu Y, Xia X, Wang L and Shao L 2019 Appl. Surf. Sci. 463 863
[1] Adsorption structure of macrocyclic energetic molecule DOATF on Au(111)
Xiao Chang(常霄), Li Huang(黄立), Yixuan Gao(高艺璇), Changjiang Yu(于长江), Yun Cao(曹云), Long Lv(吕龙), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(9): 096802.
[2] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[3] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[4] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[5] Effect of external electric field on crystalline structure anddielectric properties of Bi1.5MgNb1.5O7 thin films
Zhongzhe Liu(刘钟喆), Libin Gao(高莉彬), Kexin Liang(梁可欣), Zhen Fang(方针), Hongwei Chen(陈宏伟), and Jihua Zhang(张继华). Chin. Phys. B, 2021, 30(10): 107703.
[6] Effect of heating time on structural, morphology, optical, and photocatalytic properties of g-C3N4 nanosheets
Nguyen Manh Hung, Le Thi Mai Oanh, Lam Thi Hang, Pham Do Chung, Pham Thi Duyen, Dao Viet Thang, Nguyen Van Minh. Chin. Phys. B, 2020, 29(5): 057801.
[7] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[8] Synthesis of Pr-doped ZnO nanoparticles: Their structural, optical, and photocatalytic properties
Jun-Lian Chen(陈军联), Neena Devi, Na Li(李娜), De-Jun Fu(付德君), Xian-Wen Ke(柯贤文). Chin. Phys. B, 2018, 27(8): 086102.
[9] Elastic, thermodynamic, electronic, and optical properties of recently discovered superconducting transition metal boride NbRuB:An ab-initio investigation
F Parvin, S H Naqib. Chin. Phys. B, 2017, 26(10): 106201.
[10] Reduction of defect-induced ferromagnetic stability in passivated ZnO nanowires
Wu Fang (吴芳), Meng Pei-Wen (孟培雯), Luo Kang (罗康), Liu Yun-Fei (刘云飞), Kan Er-Jun (阚二军). Chin. Phys. B, 2015, 24(3): 037504.
[11] Transient competition between photocatalysis and carrier recombination in TiO2 nanotube film loaded with Au nanoparticles
Shao Zhu-Feng (邵珠峰), Yang Yan-Qiang (杨延强), Liu Shu-Tian (刘树田), Wang Qiang (王强). Chin. Phys. B, 2014, 23(9): 096102.
[12] Enhancing visible-light photocatalytic activity of α-Bi2O3 via non-metal N and S doping
Shang Jun (尚军), Gao Yuan (高远), Hao Wei-Chang (郝维昌), Jing Xi (井溪), Xin Hui-Ju (信会菊), Wang Liang (王亮), Feng Hai-Feng (冯海凤), Wang Tian-Min (王天民). Chin. Phys. B, 2014, 23(3): 038103.
[13] Electronic structures of halogen-doped Cu2O based on DFT calculations
Zhao Zong-Yan (赵宗彦), Yi Juan (易娟), Zhou Da-Cheng (周大成). Chin. Phys. B, 2014, 23(1): 017401.
[14] Microstructure and photocatalytic activity of titanium dioxide nanoparticles
Li Chun-Yan (李春艳), Wang Jiang-Bin (王江彬), Wang Yi-Qian (王乙潜). Chin. Phys. B, 2012, 21(9): 098102.
[15] 10BaF2:NaF, Na3AlF6/TiO2 composite as a novel visible-light-driven photocatalyst based on upconversion emission
Liu En-Zhou(刘恩周), Fan Jun(樊君), Hu Xiao-Yun(胡晓云), Hou Wen-Qian(侯文倩), and Dai Hong-Zhe(代宏哲) . Chin. Phys. B, 2012, 21(4): 043403.
No Suggested Reading articles found!