Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 068104    DOI: 10.1088/1674-1056/acbe30
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Enhanced xylene sensing performance of hierarchical flower-like Co3O4 via In doping

Jing Zhang(张京)1, Jianyu Ling(凌剑宇)1, Kuikun Gu(谷魁坤)1, Georgiy G. Levchenko1,3, and Xiao Liang(梁霄)1,2,†
1 State Key Laboratory of Superhard Materials, Physics of College, Jilin University, Changchun 130012, China;
2 Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Jilin Engineering Normal University, Changchun 130052, China;
3 Donetsk Institute for Physics and Engineering named after O. O. Galkin, NAS of Ukraine, Kyiv 03028, Ukraine
Abstract  Metal ions doping is a typical approach for tuning sensing properties of metal oxide semiconductors based gas sensors. Herein, hierarchical flower-like pure and In-doped Co3O4 nanostructures assembled by porous two-dimensional (2D) nanosheets are synthesized via a solvothermal method and annealing process. The sensing measurements display that the In@Co3O4-4 based sensor possesses high response value of 55.9 toward 100 ppm xylene at 150 ℃, which is nearly 3.8 times larger than that of pure Co3O4 sensor. Furthermore, it possesses good selectivity and anti-humidity properties. Combined with the results of DFT calculations, the mechanism of enhanced gas sensing performance is analyzed systematically.
Keywords:  sensor      Co3O4      xylene      density functional theory (DFT)  
Received:  25 November 2022      Revised:  29 January 2023      Accepted manuscript online:  23 February 2023
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
Corresponding Authors:  Xiao Liang     E-mail:  xiaoliang732@163.com

Cite this article: 

Jing Zhang(张京), Jianyu Ling(凌剑宇), Kuikun Gu(谷魁坤), Georgiy G. Levchenko, and Xiao Liang(梁霄) Enhanced xylene sensing performance of hierarchical flower-like Co3O4 via In doping 2023 Chin. Phys. B 32 068104

[1] Liu W J, Wei D D, Zhao X Y, Xiao F and Yang C2022 Appl. Surf. Sci. 602 154301
[2] Qiu L, Zhang S D, Huang J B, Wang C H, Zhao R Y, Qu F D, Wang P and Yang M H2020 Sens. Actuators B:-Chem. 308 127520
[3] Guo M M, Luo N, Chen Y, Fan Y, Wang X H and Xu J Q2022 J. Hazard. Mater. 429 127471
[4] Kim T H, Kwak C H and Lee J H2017 ACS Appl. Mater. Interfaces 9 32034
[5] Li X, Jiang D S, Fan Y Z, Zhang N, Liu C X, Adimi S, Zhou J R, Wen S P and Ruan S P2020 Inorg. Chem. Front. 7 1704
[6] Magdalane C M, Kaviyarasu K, Arularasu M V, Kanimozhi K and Ramalingam G2019 Surf. Interfaces 17 100369
[7] Sagadevan S, Marlinda A R, Johan M R, Umar A, Fouad H, Alothman O Y, Khaled U, Akhtar M S and Shahid M M2019 J. Colloid Interface Sci. 558 68
[8] Eom W, Kim A, Park H, Kim H and Han T H2016 Adv. Funct. Mater. 26 7605
[9] Sriram B, Sathiyan A, Wang S F, Elanthamilan E, Joseph X B, Baby J N, Merlin J P and Ezhilarasi J C2021 J. Solid State Chem. 295 121931
[10] Chen X H, Liang R, Qin C, Ye Z Z and Zhu L P2022 J. Alloys Compd. 891 161868
[11] Xu J M and Cheng J P2016 J. Alloys Compd. 686 753
[12] Zhou T T, Zhang T, Zhang R, Lou Z, Deng J A and Wang L L2017 Appl. Surf. Sci. 426 951
[13] Hübner M, Simion C E, Tomescu-Stǎnoiu A, Pokhrel S, Barsan N and Weimar U2011 Sens. Actuators B:-Chem. 153 347
[14] Molavi R and Sheikhi M H2018 Mater. Lett. 233 74
[15] Gao J Y, Hou M, Yang L, Guo S H and Xu K2022 Appl. Surf. Sci. 605 154769
[16] Sun H M, Tang X N, Zhang J R, Li S and Liu L2021 Sens. Actuators B:-Chem. 346 130546
[17] Cheng P F, Dang F, Wang Y L, Gao J N, Xu L P, Wang C, Lv L, Li X, Zhang B and Liu B J2021 Sens. Actuators B:-Chem. 328 129028
[18] Zhang N, Qin Q X, Ma X H, Zhou J R, Sun L, Chen C, Wen S P, Chen Y and Ruan S P2017 J. Alloys Compd. 723 779
[19] Li K, Chang X, Qiao X R, Yu S F, Li X F, Xia F J and Xue Q Z2021 Appl. Surf. Sci. 565 150520
[20] Yang T Y, Gu K K, Zhu M M, Lu Q, Zhai C B, Zhao Q, Yang X D and Zhang M Z2019 Sens. Actuators B:-Chem. 279 410
[21] Liang X, Zhang J, Zhang K W, Yang X D and Zhang M Z2022 Inorg. Chem. Front. 9 259
[22] Wang S Q, Xie J, Hu J D, Qin H Y and Cao Y L2020 Appl. Surf. Sci. 512 145722
[23] Zeng W, Li Y Q, Miao B, Lin L Y and Wang Z C2014 Sens. Actuators B:-Chem. 191 1
[24] Feng C, Qin H B, Luan X H, Kuang T F and Yang D G2018 Chem. Phys. Lett. 706 355
[25] Du L Y, Sun H M and Liu Y2022 J. Alloys Compd. 900 163470
[26] Li P P, Cao C Y, Shen Q K, Bai B, Jin H Q, Yu J, Chen W M and Song W G2021 Sens. Actuators B:-Chem. 339 129886
[27] Tong B, Meng G, Deng Z H, Gao J J, Liu H Y, Dai T T, Wang S M, Shao J Z, Tao R H, Kong F T, Tong W, Luo X and Fang X D2021 J. Alloys Compd. 851 155760
[28] Qiu L, Zhang S D, Huang J B, Wang C H, Zhao R Y, Qu F D, Wang P and Yang M R2020 Sens. Actuators B:-Chem. 308 127520
[29] Mao J N, Hong B, Chen H D, Gao M H, Xu J C, Han Y B, Yang Y T, Jin H X, Jin D F, Peng X L, Li J, Ge H L and Wang X Q2020 J. Alloys Compd. 827 154248
[30] Niu J Y, Wang L, Hong B, Xu J C, Han Y B, Jin H X, Zeng Y X, Peng X L, Ge H L and Wang X Q2021 Nanotechnology 32 485502
[31] Li X Q, Wei J Q, Xu J C, Jin H X, Jin D F, Peng X L, Hong B, Li J, Yang Y T, Ge H L and Wang X2017 J. Nanopart. Res. 19 396
[32] Wang Z H, Tian Z W, Han D M and Gu F B2016 ACS Appl. Mater. Interfaces 8 5466
[33] Tong Y, Mao H N, Xu Y L and Liu J Y2019 Inorg. Chem. Front. 6 2055
[34] Xie J Y, Liu X H, Jing S L, Pang C, Liu Q S and Zhang J2021 ACS Appl. Mater. Interfaces 13 39621
[35] Wang S, Huang D, Xu S S, Jiang W K, Wang T, Hu J, Hu N T, Su Y J, Zhang Y F and Yang Z2017 Phys. Chem. Chem. Phys. 19 19043
[36] Zhang R, Gao S, Zhou T T, Tu J C and Zhang T2020 Appl. Surf. Sci. 503 144167
[37] Navale Y H, Navale S T, Stadler F J, Ramgir N S and Patil V B2019 Ceram. Int. 45 1513
[38] Kim H J, Choi K I, Kim K M, Na C W and Lee J H 2012 Sens. Actuators B:-Chem. 171-172 1029
[39] Fan X X, Wang J F, Sun C L, Huang C, Lu Y J, Dai P, Xu Y J and He W M2022 RSC Adv. 12 19384
[40] Yang Q Y, Wang Y L, Liu J, Liu J Y, Gao Y, Sun P, Jie Z, Zhang T, Wang Y and Lu G Y2017 Sens. Actuators B:-Chem. 241 806
[41] Kim J, Hou B, Park C, Bum Bahn C, Hoffman J, Black J, Bhattacharya A, Balke N, Hong H, Kim J H and Hong S 2017 Sci. Rep. 7 1
[42] Cheng P F, Dang F, Wang Y L, Gao J N, Xu L P, Wang C, Lv L, Li X, Zhang B and Liu B J2021 Sens. Actuators B:-Chem. 328 129028
[43] Zhang Y Q, Bai J H, Zhou L S, Liu D Y, Liu F M, Liang X S, Gao Y, Liu F M, Yan X and Lu G Y2019 J. Colloid Interface Sci. 536 215
[44] Gao H Y, Wei D D, Lin P F, Liu C, Sun P, Shimanoe K, Yamazoe N and Lu G Y2017 Sens. Actuators B:-Chem. 253 1152
[45] Feng C H, Wang C, Zhang H, Li X, Wang C, Cheng P F, Ma J, Sun P, Gao Y, Zhang H, Sun Y F, Zheng J and Lu G Y2015 Sens. Actuators B:-Chem. 221 1475
[46] Qiao J P, Zhu Z P, Yan X Y and Qin J M2012 Chin. Phys. Lett. 29 020701
[47] Bai S L, Tian K, Tian Y, Guo J, Feng Y J, Luo R X, Li D Q, Chen A F and Liu C C2018 Appl. Surf. Sci. 435 384
[48] Yan W J, Hu M, Liang J R, Wang D F, Wei Y L and Qin Y X2016 Chin. Phys. B 25 040702
[49] Hu J, Xiong X Q, Guan W W, Long H Z, Zhang L X and Wang H H2022 Sens. Actuators B:-Chem. 361 131705
[50] Liu H, Chen J J, Wang Y, Xiong S C, Su Z, Wang Y, Yang W H, Chu X F, Yang W N, Peng Y, Si W Z and Li J H2021 Chem. Eng. J. 414 128643
[1] Current sensor based on diamond nitrogen-vacancy color center
Zi-Yang Shi(史子阳), Wei Gao(高伟), Qi Wang(王启), Hao Guo(郭浩), Jun Tang(唐军), Zhong-Hao Li(李中豪), Huan-Fei Wen(温焕飞), Zong-Min Ma(马宗敏), and Jun Liu(刘俊). Chin. Phys. B, 2023, 32(7): 070704.
[2] Simultaneous measurements of refractive index and temperature based on a no-core fiber coated with Ag and PDMS films
Yuxin Li(李宇昕), Hailiang Chen(陈海良), Yingyue Zhang(张赢月), Qiang Chen(陈强), Biao Wu(武彪),Xiaoya Fan(樊晓亚), Yingchao Liu(刘英超), and Mingjian Ma(马明建). Chin. Phys. B, 2023, 32(5): 054209.
[3] Predicting novel atomic structure of the lowest-energy FenP13-n (n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺) and Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[4] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[5] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[6] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[7] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[8] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[9] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[10] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[11] Optoelectronic oscillator-based interrogation system for Michelson interferometric sensors
Ling Liu(刘玲), Xiaoyan Wu(吴小龑), Guodong Liu(刘国栋), Tigang Ning(宁提纲),Jian Xu(许建), and Haidong You(油海东). Chin. Phys. B, 2022, 31(9): 090702.
[12] An all-optical phase detector by amplitude modulation of the local field in a Rydberg atom-based mixer
Xiu-Bin Liu(刘修彬), Feng-Dong Jia(贾凤东), Huai-Yu Zhang(张怀宇), Jiong Mei(梅炅), Wei-Chen Liang(梁玮宸), Fei Zhou(周飞), Yong-Hong Yu(俞永宏), Ya Liu(刘娅), Jian Zhang(张剑), Feng Xie(谢锋), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2022, 31(9): 090703.
[13] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[14] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[15] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
No Suggested Reading articles found!