Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 027704    DOI: 10.1088/1674-1056/ae3308
TOPICAL REVIEW — Multiferroicity and multicaloric effects Prev   Next  

Design of electrocaloric materials based on E-T phase diagrams

Fei Han(韩飞)1, Rongju Zhong(钟容菊)1, Jikun Yang(杨继昆)2, Chuanbao Liu(刘传宝)1, and Yang Bai(白洋)1,†
1 Beijing Key Laboratory of Materials Intelligent Technology, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China;
2 Department of Physics, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
Abstract  As electronic technology continues to evolve towards miniaturization and integration, the demand for micro-refrigeration technology in microelectronic systems is increasing. Ferroelectric (FE) refrigeration technology based on the electrocaloric effect (ECE) has emerged as a highly promising candidate in this field, due to its advantages of high energy efficiency, simple structure, easy miniaturization, low cost, and environmental friendliness. The EC performance of FE materials essentially depends on the phase transition features under the coupled electric and thermal fields, making the $E$-$T$ phase diagram a core tool for decoding the underlying mechanism of ECE. This paper reviews the development of EC materials, focusing on the comprehensive study of $E$-$T$ phase diagrams. By correlating the microscopic phase structure of FE materials with the macroscopic physical properties, it clarifies the manipulation mechanism for enhanced ECE performance, providing theoretical support for the targeted design of high-performance EC materials. In the future, the introduction of data-driven methods is expected to enable the high-throughput construction of FE phase diagrams, thereby accelerating the optimization of high-performance EC materials and promoting the practical application of FE refrigeration technology.
Keywords:  ferroelectric material      electrocaloric effect      phase diagram      phase transition      sold-state refrigeration  
Received:  22 November 2025      Revised:  27 December 2025      Accepted manuscript online:  04 January 2026
PACS:  77.80.-e (Ferroelectricity and antiferroelectricity)  
  77.80.bn (Strain and interface effects)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U25A20232, 52325208, 52173217, and 52202128) and the Interdisciplinary Research Project for Young Teachers of USTB (Grant No. FRF-IDRY-24-002).
Corresponding Authors:  Yang Bai     E-mail:  baiy@mater.ustb.edu.cn

Cite this article: 

Fei Han(韩飞), Rongju Zhong(钟容菊), Jikun Yang(杨继昆), Chuanbao Liu(刘传宝), and Yang Bai(白洋) Design of electrocaloric materials based on E-T phase diagrams 2026 Chin. Phys. B 35 027704

[1] Han D L, Zhang Y J, Huang C L, Zheng S Y, Wu D Y, Li Q, Du F H, Duan H X, Chen W L, Shi J Y, Chen J P, Liu G, Chen X and Qian X S 2024 Nature 629 1041
[2] Li J N, Torelló A, Kovacova V, Prah U, Aravindhan A, Granzow T, Usui T, Hirose S and Defay E 2023 Science 382 801
[3] Wang Y D, Zhang Z Y, Usui T, Benedict M, Hirose S, Lee J, Kalb J and Schwartz D 2020 Science 370 129
[4] Torelló A, Lheritier P, Usui T, Nouchokgwe Y, Gérard M, Bouton O, Hirose S and Defay E 2020 Science 370 125
[5] Li J J, Li J T, Wu H H, Qin S Q, Su X P, Wang Y, Lou X J, Guo D, Su Y J, Qiao L J and Bai Y 2020 ACS Appl. Mater. Interfaces 12 45005
[6] Kobeco P and Kurtchatov I 1930 Z. Phys 66 192
[7] Hegenbarth E 1961 Cryogenics 1 242
[8] Mischenko A S, Zhang Q, Scott J, Whatmore R W and Mathur N D 2006 Science 311 1270
[9] Neese B, Chu B J, Lu S G, Wang Y, Furman E and Zhang Q M 2008 Science 321 821
[10] Bai Y, Zheng G P, Ding K, Qiao L J, Shi S Q and Guo D 2011 J. Appl. Phys. 110 094103
[11] Nair B, Usui T, Crossley S, Kurdi S, Guzmán-Verri G G, Moya X, Hirose S and Mathur N D 2019 Nature 575 468
[12] Yin R W, Liu D, Lv X W, Jiao K L, Hou Y X, Li J J, Luo H J, Zhong R J, Qi X Y, Liu C B, Su Y J, Qiao L J, Che R C, Zhu L F, Lookman T and Bai Y 2025 Adv. Funct. Mater. 35 2502550
[13] Du F H, Yang T N, Hao H, et al. 2025 Nature 640 924
[14] Yin R W, Hou Y X, Lv X W, Li J J, Zhong R J, Su Y J, Qiao L L, Che R C, Zhu L F, Liu C B and Bai Y 2025 J. Adv. Ceram. 14 9221088
[15] Zheng S Y, Du F H, Zheng L R, Han D L, Li Q, Shi J Y, Chen J P, Shi X M, Huang H B, Luo Y R, Yang Y R, O’reilly P, Wei L L, Souza N D, Hong L and Qian X S 2023 Science 382 1020
[16] Qian X S, Han D L, Zheng L R, et al. 2021 Nature 600 664
[17] Peng B L, Fan H Q and Zhang Q 2013 Adv. Funct. Mater. 23 2987
[18] Zhao Y, Hao X H and Zhang Q 2015 J. Mater. Chem. C 3 1694
[19] Ma R J, Zhang Z Y, Tong K, Huber D, Kornbluh R, Ju Y S and Pei Q B 2017 Science 357 1130
[20] Bo Y W, Zhang Q, Cui H, Wang M Y, Zhang C Y, He W, Fan X Q, Lv Y W, Fu X and Liang J J 2021 Adv. Energy Mater. 11 2003771
[21] Meng Y, Zhang Z Y, Wu H X, Wu R Y, Wu J H, Wang H L and Pei Q B 2020 Nat. Energy 5 996
[22] Schader F H, Isaia D, Weber M, Aulbach E and Webber K G 2018 J. Mater. Sci. 53 3296
[23] Webber K, Aulbach E, Key T, Marsilius M, Granzow T and Rödel J 2009 Acta Mater. 57 4614
[24] Yoshimura M and Bowen H 1981 J. Am. Ceram. Soc. 64 404
[25] Forlani F and Minnaja N 1964 Physica Status Solidi 4 311
[26] Chukka R, Cheah JW, Chen Z H, Yang P, Shannigrahi S,Wang J L and Chen L 2011 Appl. Phys. Lett. 98 242902
[27] Boni G A, Filip L D, Radu C, Chirila C, Pasuk I, Botea M, Pintilie I and Pintilie L 2022 Electron. Mater. 3 344
[28] Bag S P, Hou X, Zhang J T, Wu S H and Wang J 2020 IEEE Trans. Electron Devices 67 1769
[29] Hao X H, Yue Z X, Xu J B, An S L and Nan C W 2011 J. Appl. Phys. 110 064109
[30] Saranya D, Chaudhuri A R, Parui J and Krupanidhi S B 2009 Bull. Mater. Sci. 32 259
[31] Lu S G, Rožič B, Zhang Q M, Kutnjak Z, Li X Y, Furman E, Gorny L J, Lin M R, Malič B and Kosec M 2010 Appl. Phys. Lett. 97 162904
[32] He Y, Li X M, Gao X D, Leng X andWangW2011 Funct. Mater. Lett. 4 45
[33] Feng Z Y, Shi D Q and Dou S X 2011 Solid State Commun. 151 123
[34] Feng Z Y, Shi D Q, Zeng R and Dou S X 2011 Thin Solid Films 519 5433
[35] Mischenko A S, Zhang Q, Whatmore R W, Scott J F and Mathur N D 2006 Appl. Phys. Lett. 89 242912
[36] Correia T, Young J, Whatmore R W, Scott J, Mathur N and Zhang Q 2009 Appl. Phys. Lett. 95 182904
[37] Parui J and Krupanidhi S B 2008 Phys. Status Solidi RRL 2 230
[38] Yuan Y, Sun B W, Guo M Y, Wu M, Gao Y F, Zhu X P, Sun H N, Zhao J T, Liu Y B and Gao J H 2022 J. Alloys Compd. 899 163165
[39] Liang Y X, LiWH, Jian Z F, SongWL, Zhao R K, Tang X G, Jiang Y P, Guo X B and Yan K 2025 Colloid Surf. Physicochem. Eng. Asp. 709 136138
[40] Correia T M, Kar-Narayan S, Young J S, Scott J F, Mathur N D, Whatmore R W and Zhang Q 2011 J. Phys. D: Appl. Phys. 44 165407
[41] Kovacova V, Glinsek S, Girod S and Defay E 2022 Sensors 22 4049
[42] Aravindhan A, Glinsek S, Girod S, Martinez A B, Granzow T, Kovacova V and Defay E 2024 Heliyon 10 e30430
[43] Chen H, Ren T L,Wu X M, Yang Y and Liu L T 2009 Appl. Phys. Lett. 94 182902
[44] Moya X, Stern-Taulats E, Crossley S, González-Alonso D, Kar- Narayan S, Planes A, Mañosa L and Mathur N D 2013 Adv. Mater. 25 1360
[45] Bai Y, Han X, Zheng X C and Qiao L J 2013 Sci. Rep. 3 2895
[46] Bai Y, Han X, Ding K and Qiao L J 2013 Appl. Phys. Lett. 103 162902
[47] Han F, Bai Y, Qiao L J and Guo D 2016 J. Mater. Chem. C 4 1842
[48] Bai Y, Han X and Qiao L J 2013 Appl. Phys. Lett. 102 252904
[49] Qian X S, Ye H J, Zhang Y T, Gu H M, Li X Y, Randall C and Zhang Q M 2014 Adv. Funct. Mater. 24 1300
[50] Ye H J, Qian X S, Jeong D Y, Zhang S J, Zhou Y, Shao W Z, Zhen L and Zhang Q M 2014 Appl. Phys. Lett. 105 152908
[51] Luo Z D, Zhang D W, Liu Y, Zhou D, Yao Y G, Liu C Q, Dkhil B, Ren X B and Lou X J 2014 Appl. Phys. Lett. 105 102904
[52] Li J N, Zhang D W, Qin S Q, Li T Y, Wu M, Wang D, Bai Y and Lou X J 2016 Acta Mater. 115 58
[53] Bai Y, Wei D and Qiao L J 2015 Appl. Phys. Lett. 107 192904
[54] Rožič B, Kosec M, Uršič H, Holc J, Malič B, Zhang Q M, Blinc R, Pirc R and Kutnjak Z 2011 J. Appl. Phys. 110
[55] Bolten D, Böttger U and Waser R 2003 J. Appl. Phys. 93 1735
[56] Bolten D, Böttger U and Waser R 2004 J. Eur. Ceram. Soc. 24 725
[57] Bolten D, Lohse O, Grossmann M and Waser R 1999 Ferroelectrics 221 251
[58] Li J T, Yin R W, Su X P, Wu H H, Li J J, Qin S Q, Sun S D, Chen J, Su Y J, Qiao L J, Guo D and Bai Y 2020 Acta Mater. 182 250
[59] Vid Bobnar Z K, Rasǎ P and Adrijan L 1999 Phys. Rev. B 60 6420
[60] Li J J, Li J T, Qin S Q, Su X P, Qiao L J, Wang Y, Lookman T and Bai Y 2019 Phys. Rev. Appl. 11 044032
[61] Weyland F, Acosta M, Vögler M, Ehara Y, Rödel J and Novak N 2018 J. Mater. Sci. 53 9393
[62] Weyland F, Acosta M, Koruza J, Breckner P, Rödel J and Novak N 2016 Adv. Funct. Mater. 26 7326
[63] Novak N, Pirc R and Kutnjak Z 2013 Europhys. Lett. 102 17003
[64] Li J J, Yin RW, Li J T, Su X P, Su Y J, Qiao L J and Bai Y 2023 J. Adv. Ceram. 12 463
[65] Li J J,Wu H H, Li J T, Su X P, Yin RW, Qin S Q, Guo D, Su Y J, Qiao L J, Lookman T and Bai Y 2021 Adv. Funct. Mater. 31 2101176
[66] Ponomareva I and Lisenkov S 2012 Phys. Rev. Lett. 108 167604
[67] Wu H H and Cohen R E 2017 J. Phys.: Condens. Matter 29 485704
[68] Li J T, Qin S Q, Bai Y, Li J J and Qiao L J 2017 Appl. Phys. Lett. 111 093901
[69] Marathe M, Renggli D, Sanlialp M, Karabasov M O, Shvartsman V V, Lupascu D C, Grünebohm A and Ederer C 2017 Phys. Rev. B 96 014102
[70] Zhou Y M, Li Q, Zhuo F P, Yan Q F, Zhang Y L and Chu X C 2018 Ceram. Int. 44 9045
[71] Peräntie J, Hagberg J, Uusimäki A and Jantunen H 2010 Phys. Rev. B 82 134119
[72] Goupil F L, Berenov A, Axelsson A K, Valant M and Alford N M 2012 J. Appl. Phys. 111 124109
[73] Axelsson A K, Le Goupil F, Dunne L J, Manos G, Valant Mand Alford N 2013 Appl. Phys. Lett. 102 102902
[74] Wu H H and Cohen R 2017 Phys. Rev. B 96 054116
[75] Li Z H, Li J T, Wu H H, Li J J, Wang S H, Qin S Q, Su Y J, Qiao L J, Guo D and Bai Y 2020 Acta Mater. 191 13
[76] Li Z H, Wu H H, Li J J, Wang S H, Qin S Q, He J J, Liu C B, Su Y J, Qiao L J, Lookman T and Bai Y 2022 Acta Mater. 228 117784
[1] Phase transition of interfacial water at low-dimensions
Wenlong Liang(梁文龙), Yujie Huang(黄雨婕), Yue Zhang(张悦), and Chunlei Wang(王春雷). Chin. Phys. B, 2026, 35(2): 020501.
[2] Electrocaloric refrigeration: From physical fundamentals to practical devices
Feiyu Zhang(张费宇), Tiannan Yang(杨天南), and Xiaoshi Qian(钱小石). Chin. Phys. B, 2026, 35(2): 027701.
[3] A metastable state mediates the surface disordering of ice Ih
Zixiang Yan(颜子翔), Jiani Hong(洪嘉妮), Ye Tian(田野), Tiancheng Liang(梁天成), Limei Xu(徐莉梅), and Ying Jiang(江颖). Chin. Phys. B, 2026, 35(1): 016804.
[4] Structural phase transition and quasi-layered active-ion distribution suppress concentration quenching in Tb3+-activated KBi(MoO4)2
Mengyu Zhang(张梦宇), Shujing Pan(潘淑晶), Haitang Hu(胡海棠), Wenzhi Su(宿文志), Yong Zou(邹勇), Shoujun Ding(丁守军), and Qingli Zhang(张庆礼). Chin. Phys. B, 2026, 35(1): 017801.
[5] Exceptional point-induced knot structure transformations in non-Abelian braids
Lin-Sheng Bao(包淋升), Jia-Yun Ning(宁佳运), Ao-Qian Shi(史奥芊), Peng Peng(彭鹏), Zhen-Nan Wang(王瑱男), Chao Peng(彭超), Shuang-Chun Wen(文双春), and Jian-Jun Liu(刘建军). Chin. Phys. B, 2026, 35(1): 010203.
[6] Corrigendum to “Multi-functional photonic spin Hall effect sensor controlled by phase transition”
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2025, 34(9): 099901.
[7] Pressure-induced band gap closing of lead-free halide double perovskite (CH3NH3)2PtI6
Siyu Hou(侯思羽), Jiaxiang Wang(王家祥), Yijia Huang(黄乙甲), Ruijing Fu(付瑞净), and Lingrui Wang(王玲瑞). Chin. Phys. B, 2025, 34(8): 086106.
[8] Graph neural networks unveil universal dynamics in directed percolation
Ji-Hui Han(韩继辉), Cheng-Yi Zhang(张程义), Gao-Gao Dong(董高高), Yue-Feng Shi(石月凤), Long-Feng Zhao(赵龙峰), and Yi-Jiang Zou(邹以江). Chin. Phys. B, 2025, 34(8): 080702.
[9] Quantum phase transitions with eigen microstate approach in one-dimensional transverse-field Ising model
Zhongshan Su(苏中山), Yuan Jiang(江源), Gaoke Hu(胡高科), Yue-Hua Su(苏跃华), Liangsheng Li(李粮生), Wen-Long You(尤文龙), Maoxin Liu(刘卯鑫), and Xiaosong Chen(陈晓松). Chin. Phys. B, 2025, 34(8): 086401.
[10] Effect of interlayer interaction on magnon properties of vdW honeycomb heterostructures
Jun Shan(单俊), Lichuan Zhang(张礼川), Huasu Fu(付华宿), Yuee Xie(谢月娥), Yuriy Mokrousov, and Yuanping Chen(陈元平). Chin. Phys. B, 2025, 34(8): 087501.
[11] First-principles study on structural, electronic, and superconducting properties of Laves-phase alloy HfZn2 under pressure
Xiao Ma(马晓), Tao Wang(王涛), Jianfeng Wen(文剑锋), Zhenwei Zhou(周振玮), and Hongyu Zhu(朱红玉). Chin. Phys. B, 2025, 34(8): 086108.
[12] Pressure distribution imaging through wide-field optical detected magnetic resonance
Chaofan Lv(吕超凡), Kai Ma(马凯), Feihu Lei(雷飞虎), Yidan Qu(屈怡丹), Qilong Wu(吴琦隆), Wuyou Zhang(张吾优), Yingjie Zhang(张英杰), Huihui Yu(余辉辉), Xuanming Shen(申炫铭), Yuan Zhang(张元), Xigui Yang(杨西贵), and Chongxin Shan(单崇新). Chin. Phys. B, 2025, 34(8): 087601.
[13] Role of symmetry in antiferromagnetic topological insulators
Sahar Ghasemi and Morad Ebrahimkhas. Chin. Phys. B, 2025, 34(7): 077302.
[14] Morphology-tuned phase transition of MnO2 nanorods under high pressure
Xue-Ting Zhang(张雪婷), Chen-Yi Li(李晨一), Hui Tian(田辉), Xin-Yue Wang(王心悦), Zong-Lun Li(李宗伦), and Quan-Jun Li(李全军). Chin. Phys. B, 2025, 34(6): 066105.
[15] Positive and negative electrocaloric effects
Hongrui Xu(徐洪瑞) and Jiping Huang(黄吉平). Chin. Phys. B, 2025, 34(6): 067702.
No Suggested Reading articles found!