Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 027802    DOI: 10.1088/1674-1056/ae37f4
COMPUTATIONAL PROGRAMS FOR PHYSICS Prev   Next  

GranuSAS: Software of rapid particle size distribution analysis from small angle scattering data

Qiaoyu Guo(郭桥雨), Fei Xie(谢飞), Xuefei Feng(冯雪飞), Zhe Sun(孙喆), Changda Wang(王昌达)†, and Xuechen Jiao(焦学琛)‡
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Abstract  Small angle x-ray scattering (SAXS) is an advanced technique for characterizing the particle size distribution (PSD) of nanoparticles. However, the ill-posed nature of inverse problems in SAXS data analysis often reduces the accuracy of conventional methods. This article proposes a user-friendly software for PSD analysis, GranuSAS, which employs an algorithm that integrates truncated singular value decomposition (TSVD) with the Chahine method. This approach employs TSVD for data preprocessing, generating a set of initial solutions with noise suppression. A high-quality initial solution is subsequently selected via the $L$-curve method. This selected candidate solution is then iteratively refined by the Chahine algorithm, enforcing constraints such as non-negativity and improving physical interpretability. Most importantly, GranuSAS employs a parallel architecture that simultaneously yields inversion results from multiple shape models and, by evaluating the accuracy of each model's reconstructed scattering curve, offers a suggestion for model selection in material systems. To systematically validate the accuracy and efficiency of the software, verification was performed using both simulated and experimental datasets. The results demonstrate that the proposed software delivers both satisfactory accuracy and reliable computational efficiency. It provides an easy-to-use and reliable tool for researchers in materials science, helping them fully exploit the potential of SAXS in nanoparticle characterization.
Keywords:  small angle x-ray scattering      data analysis software      particle size distribution      inverse problem  
Received:  30 September 2025      Revised:  09 January 2026      Accepted manuscript online:  14 January 2026
PACS:  78.70.Ck (X-ray scattering)  
  88.40.fc (Modeling and analysis)  
  75.50.Tt (Fine-particle systems; nanocrystalline materials)  
  02.30.Zz (Inverse problems)  
Fund: We thank Hefei Synchrotron Radiation Facility (RSoXS endstation, Jinhua beamline BL05UB, NSRL) for help in the scattering experiments. Project supported by the Project of the Anhui Provincial Natural Science Foundation (Grant No. 2308085MA19), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA0410401), the National Natural Science Foundation of China (Grant No. 52202120), the National Key Research and Development Program of China (Grant No. 2023YFA1609800), and USTC Research Funds of the Double First-Class Initiative (Grant No. YD2310002013).
Corresponding Authors:  Changda Wang, Xuechen Ji     E-mail:  wchda@ustc.edu.cn;xjiao@ustc.edu.cn

Cite this article: 

Qiaoyu Guo(郭桥雨), Fei Xie(谢飞), Xuefei Feng(冯雪飞), Zhe Sun(孙喆), Changda Wang(王昌达), and Xuechen Jiao(焦学琛) GranuSAS: Software of rapid particle size distribution analysis from small angle scattering data 2026 Chin. Phys. B 35 027802

[1] Al-Shammari Z, Massoudi I, Rached A, Ababutain I, Alghamdi A I, Algarou N A, Amin K A, Kotb E and Ben Ali A 2025 Mater. Technol. 40 2506674
[2] Caputo F, Clogston J, Calzolai L, Rösslein M and Prina-Mello A 2019 J. Controlled Release 299 31
[3] Indiarto R, Firdaus R G, Marta H, Subroto E, Muhammad D R A and Sikin A M 2025 Int. J. Food Prop. 28 2509992
[4] Xiao C J, Cai W J, Li R D, Ni S, Jiang W T, Wang Z W, Yaqoob K, Chen Z B, Huang Y and Song M 2026 J. Mater. Sci. Technol. 242 1
[5] Gu Q, Zhang H, Liang Z, Li J, Wang Z, Zhou J, Zhong Z, Fan Y and Xing W 2025 J. Membr. Sci. 733 124303
[6] BläUbaum L, Röder F, Nowak C, Chan H S, Kwade A and Krewer U 2020 ChemElectroChem 7 4755
[7] Raj K 2016 Mater. Powder Rep. 71 285
[8] Mostafaei A, De Vecchis P R, Nettleship I and ChmielusM2019 Mater. Des. 162 375
[9] German R M 1992 Metall. Trans. A 23 1455
[10] Sun J, Wang F, Sui Y, She Z, Zhai W, Wang C and Deng Y 2012 Int. J. Nanomed. 7 5733
[11] Danaei M, Dehghankhold M, Ataei S, Davarani F H, Javanmard R, Dokhani A, Khorasani S and Mozafari M R 2018 Pharmaceutics 10 57
[12] Song Y M, Song L G, Zhu T, Chen Y, Jin S X, Tian F, Hong Z Y, Zhang P,Wang B Y,Wang H H, Yan Q Z, Bian F G and Cao X Z 2021 J. Nucl. Mater. 554 153083
[13] Chokprasombat K, Koyvanich K, Sirisathitkul C, Harding P and Rugmai S 2016 Trans. Indian Inst. Met. 69 733
[14] Larsen A H, Arleth L and Hansen S 2018 J. Appl. Crystallogr. 51 1151
[15] Taché O, Rouzière S, Joly P, Amara M, Fleury B, Thill A, Launois P, Spalla O and Abécassis B 2016 J. Appl. Crystallogr. 49 1624
[16] Zhao H, Wu Z H, Guo M F and Dong B Z 2003 Chin. Phys. C 27 1034
[17] Kyutt R N, Smorgonskaya É A, Danishevskii A M, Gordeev S K and Grechinskaya A V 1999 Phys. Solid State 41 1359
[18] Welborn S S and Detsi E 2020 Nanoscale Horiz. 5 12
[19] Mulato M, Tygel D and Chambouleyron I 1997 J. Appl. Crystallogr. 30 808
[20] Chen R C, Li Z H and He J H 2024 Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms 552 165377
[21] Klema V and Laub A 1980 IEEE Trans. Autom. Control 25 164
[22] Hansen P C 1990 SIAM J. Sci. Stat. Comput. 11 503
[23] Grasedyck L 2010 SIAM J. Matrix Anal. Appl. 31 2029
[24] Ferri F, Righini G and Paganini E 1997 Appl. Opt. 36 7539
[25] Tanouye F T, Alves J R, Spinozzi F and Itri R 2023 Int. J. Biol. Macromol. 248 125869
[26] Pauw B R, Pedersen J S, Tardif S, Takata M and Iversen B B 2013 J. Appl. Crystallogr. 46 365
[27] Li Y, Liu L, Zhao X, Zhou S, Wu X, Lai Y, Chen Z, Chen J and Xing X 2024 Radiat. Detect. Technol. Methods 8 1712
[28] Smirnov A V, Deryabin I N and Fedorov B A 2015 J. Appl. Crystallogr. 48 1089
[29] Onsager L 1949 Ann. N. Y. Acad. Sci. 51 627
[30] Feller D, Otten M, Hildebrandt M, Krüsmann M, Bryant G and Karg M 2021 Soft Matter 17 4019
[31] Pedersen J S 1997 Adv. Colloid Interface Sci. 70 171
[32] Isihara A 1950 J. Chem. Phys. 18 1446
[33] Feigin L A and Svergun D I 1987 Structure analysis by small-angle X-ray and neutron scattering (Springer New York, NY)
[34] Lange K 2010 Numerical Analysis for Statisticians (New York, NY: Springer New York) pp. 129–142
[35] Xu P 1998 Geophys. J. Int. 135 505
[36] XieMX, Song B Y, Guo Q Y and Jiao X 2024 Chin. Phys. B 33 120101
[1] Weighted total variation using split Bregman fast quantitative susceptibility mapping reconstruction method
Lin Chen(陈琳), Zhi-Wei Zheng(郑志伟), Li-Jun Bao(包立君), Jin-Sheng Fang(方金生), Tian-He Yang(杨天和), Shu-Hui Cai(蔡淑惠), Cong-Bo Cai(蔡聪波). Chin. Phys. B, 2018, 27(8): 088701.
[2] Reconstruction of dynamic structures of experimental setups based on measurable experimental data only
Tian-Yu Chen(陈天宇), Yang Chen(陈阳), Hu-Jiang Yang(杨胡江), Jing-Hua Xiao(肖井华), Gang Hu(胡岗). Chin. Phys. B, 2018, 27(3): 030503.
[3] Inverse full state hybrid projective synchronizationfor chaotic maps with different dimensions
Adel Ouannas, Giuseppe Grassi. Chin. Phys. B, 2016, 25(9): 090503.
[4] Apparent directional spectral emissivity determination of semitransparent materials
Chun-Yang Niu(牛春洋), Hong Qi(齐宏), Ya-Tao Ren(任亚涛), Li-Ming Ruan(阮立明). Chin. Phys. B, 2016, 25(4): 047801.
[5] Accurate reconstruction of the optical parameter distribution in participating medium based on the frequency-domain radiative transfer equation
Yao-Bin Qiao(乔要宾), Hong Qi(齐宏), Fang-Zhou Zhao(赵方舟), Li-Ming Ruan(阮立明). Chin. Phys. B, 2016, 25(12): 120201.
[6] In-situ SAXS study on PET/ PMMT composites during tensile tests
Wei-Dong Cheng(程伟东), Xiao-Hua Gu(顾晓华), Xue Song(宋雪), Peng Zeng(曾鹏), Zhao-Jun Wu(吴昭君), Xue-Qing Xing(邢雪青), Guang Mo(默广), Zhong-Hua Wu(吴忠华). Chin. Phys. B, 2016, 25(1): 017802.
[7] Inverse problem of pulsed eddy current field of ferromagnetic plates
Chen Xing-Le (陈兴乐), Lei Yin-Zhao (雷银照). Chin. Phys. B, 2015, 24(3): 030301.
[8] Simultaneous reconstruction of temperature distribution and radiative properties in participating media using a hybrid LSQR–PSO algorithm
Niu Chun-Yang (牛春洋), Qi Hong (齐宏), Huang Xing (黄兴), Ruan Li-Ming (阮立明), Wang Wei (王伟), Tan He-Ping (谈和平). Chin. Phys. B, 2015, 24(11): 114401.
[9] An approach to estimating and extrapolating model error based on inverse problem methods:towards accurate numerical weather prediction
Hu Shu-Juan (胡淑娟), Qiu Chun-Yu (邱春雨), Zhang Li-Yun (张利云), Huang Qi-Can (黄启灿), Yu Hai-Peng (于海鹏), Chou Ji-Fan (丑纪范). Chin. Phys. B, 2014, 23(8): 089201.
[10] Cardiac electrical activity imaging of patients with CRBBB or CLBBB in magnetocardiography
Zhu Jun-Jie (朱俊杰), Jiang Shi-Qin (蒋式勤), Wang Wei-Yuan (王伟远), Zhao Chen (赵晨), Wu Yan-Hua (吴燕华), Luo Ming (罗明), Quan Wei-Wei (权薇薇). Chin. Phys. B, 2014, 23(4): 048702.
[11] A Compton scattering image reconstruction algorithm based on total variation minimization
Li Shou-Peng (李守鹏), Wang Lin-Yuan (王林元), Yan Bin (闫镔), Li Lei (李磊), Liu Yong-Jun (刘拥军). Chin. Phys. B, 2012, 21(10): 108703.
[12] An inverse problem in analytical dynamics
Li Guang-Cheng(李广成) and Mei-Feng-Xiang(梅凤翔). Chin. Phys. B, 2006, 15(8): 1669-1671.
[13] Synchrotron small angle x-ray scattering study of dye-sensitized/-unsensitized TiO2 nanoparticle colloidal solution
Hong Xin-Guo (洪新国), Du Lu-Chao (都鲁超), Ye Man-Ping (叶满萍), Weng Yu-Xiang (翁羽翔). Chin. Phys. B, 2004, 13(5): 720-724.
[14] Lie symmetries and conserved quantities of Birkhoff systems with unilateral constraints
Zhang Hong-Bin (张宏彬), Gu Shu-Long (顾书龙). Chin. Phys. B, 2002, 11(8): 765-770.
[15] Investigation of titanium nitride coating by broadband laser ultrasonic spectroscopy
Gao Wei-Min (高伟民), Christ Glorieux, Walter Lauriks, Jan Thoen. Chin. Phys. B, 2002, 11(2): 132-138.
No Suggested Reading articles found!