|
|
|
Possible orthorhombic phase of Ta2O5 under high pressures |
| Yan Gong(龚艳)1,2, Hui-Min Tang(唐慧敏)3, Yong Yang(杨勇)1,2,†, and Yoshiyuki Kawazoe4,5 |
1 Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China; 2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China; 3 College of Physics and Technology, Guangxi Normal University, Guilin 541004, China; 4 New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-4 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; 5 Department of Physics, SRM University-AP, Amaravati 522240, Andhra Pradesh, India |
|
|
|
|
Abstract A potential orthorhombic phase of Ta2O5, designated as Y-Ta2O5, is predicted under high-pressure conditions using density functional theory (DFT) combined with structural search algorithms. This phase, containing four formula units per unit cell (Z = 4), exhibits the highest Ta–O coordination numbers reported to date. Y-Ta2O5 is identified as the most energetically stable form of Ta2O5 within the pressure range of approximately 70 GPa to at least 200 GPa. Both standard DFT-GGA and higher-accuracy GW calculations indicate that Y-Ta2O5 is a wide-bandgap semiconductor with a direct bandgap. Furthermore, nuclear quantum effects (NQEs) introduce nontrivial corrections to external pressure at fixed volumes, underscoring their significance in high-pressure phase stability analyses.
|
Received: 07 August 2025
Revised: 08 September 2025
Accepted manuscript online: 19 September 2025
|
|
PACS:
|
61.50.Ks
|
(Crystallographic aspects of phase transformations; pressure effects)
|
| |
63.20.dk
|
(First-principles theory)
|
| |
71.20.Nr
|
(Semiconductor compounds)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074382, 11474285, and 12464012). We would like to thank Professor E. G. Wang for reading and helpful comments on the manuscript. We are grateful to the staff of the Hefei Branch of Supercomputing Center of Chinese Academy of Sciences, and the Hefei Advanced Computing Center for support of supercomputing facilities. We also thank the crew of the Center for Computational Materials Science, Institute for Materials Research of Tohoku University, and the supercomputer resources through the HPCI System Research Project (hp200246). |
Corresponding Authors:
Yong Yang
E-mail: yyanglab@issp.ac.cn
|
Cite this article:
Yan Gong(龚艳), Hui-Min Tang(唐慧敏), Yong Yang(杨勇), and Yoshiyuki Kawazoe Possible orthorhombic phase of Ta2O5 under high pressures 2025 Chin. Phys. B 34 116104
|
[1] Chu A K, Lu Y Y and Lin Y Y 2019 Opt. Express 27 6629 [2] Lamee K F, Carlson D R, Newman Z L, Yu S P and Papp S B 2020 Opt. Lett. 45 4192 [3] Zhang Z, Liu R, Wang W, Yan K, Yang Z, Song M, Wu D, Xu P, Wang X and Wang R 2023 Opt. Lett. 48 5799 [4] Song S G, Cai S J, Han D X, García Nunez C, Zhang G, Wallace G, Fleming L, Craig K, Reid S, Martin I W, Rowan S and Gibson D 2023 Appl. Opt. 62 B73 [5] Liu L F, Pan L Y, Zhang Z G and Xu J 2015 Chin. Phys. Lett. 32 088501 [6] Sun S, Gao L, Han P, Zhu L, LiWM and Li A D 2024 J. Mater. Chem. C 12 18676 [7] Wedig A, Luebben M, Cho D Y, Moors M, Skaja K, Rana V, Hasegawa T, Adepalli K K, Yildiz B,Waser R and Valov I 2016 Nat. Nanotechnol. 11 67 [8] Kingon A I, Maria J P and Streiffer S K 2000 Nature 406 1032 [9] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632 [10] Huerta-Flores A M, Ruiz-Zepeda F, Eyovge C, Winczewski J P, Vandichel M, Gaberscek M, Boscher N D, Gardeniers H, Torres- Martinez L M and Susarrey-Arce A 2022 ACS Appl. Mater. Interfaces 14 31767 [11] Li R Y, Zhang Q Q, Li X S, Li N N, Liu X H and Li Z J 2025 J. Electroanal. Chem. 990 119163 [12] Osuagwu B, Raza W, Tesler A B and Schmuki P 2021 Nanoscale 13 12750 [13] Narangari P R, Karuturi S K, Wu Y, Wong-Leung J, Vora K, Lysevych M, Wan Y, Tan H H, Jagadish C and Mokkapati S 2019 Nanoscale 11 7497 [14] Polydorou E, Verouti M, Soultati A, Armadorou K K, Verykios A, Filippatos P P, Galanis G, Tourlouki K, Kehayias N, Karatasios I, Kuganathan N, Chroneos A, Kilikoglou V, Palilis L C, Argitis P, Davazoglou D, Fakharuddin A, Mohd Yusoff A R b and Vasilopoulou M 2022 Org. Electron. 108 106607 [15] Wang C, Zhou C H, Wang J G, Cho Y S, Wu W Y, Wuu D S, Huang C J and Lien S Y 2025 Ceram. Int. 51 28791 [16] Singh E R, Almulhem N K, Alam M W and Singh N K 2024 Opt. Mater. 155 115858 [17] Le Y, Ma X C, Xiao H D, Luan C N, Zhang B and Ma J 2023 Appl. Phys. Lett. 122 252103 [18] Hosseini M, Khalil-Allafi J, Safavi M S and Ghalandarzadeh A 2025 J. Alloys Compd. 1023 180193 [19] Hosseini M, Khalil-Allafi J and SafaviMS 2024 J. Mater. Res. Technol. 33 4055 [20] Rafieerad A, Yan W, Alagarsamy K N, Srivastava A, Sareen N, Arora R C and Dhingra S 2021 Adv. Funct. Mater. 31 2106786 [21] Lawson T, Joenathan A, Patwa A, Snyder B D and GrinstaffMW2021 ACS Nano 15 19175 [22] Bratash O, Courson R, Malaquin L, Leichle T, Buhot A, Leroy L and Engel E 2025 Adv. Mater. Interfaces 12 2400941 [23] Rahman S, AzharuddinMand Tabassum R 2024 Mater. Sci. Semicond. Process. 178 108457 [24] Pérez-Walton S, Valencia-Balvín C, Padilha A C M, Dalpian G M and Osorio-Guillén J M 2016 J. Phys.: Condens. Matter 28 035801 [25] Terao N 1967 Jpn. J. Appl. Phys. 6 21 [26] Zibrov I P, Filonenko V P, Sundberg M and Werner P E 2000 Acta Crystallogr. B 56 659 [27] Tang H M and Yang Y 2024 Chin. J. Phys. 89 1678 [28] Stephenson N C and Roth R S 1971 Acta Crystallogr. Sect. B 27 1037 [29] Grey I E, Mumme W G and Roth R S 2005 J. Solid State Chem. 178 3308 [30] Hummel H U, Fackler R and Remmert P 2006 Chem. Ber. 125 551 [31] Fukumoto A and Miwa K 1997 Phys. Rev. B 55 11155 [32] Aleshina L A and Loginova S V 2002 Crystallogr. Rep. 47 415 [33] Ramprasad R 2003 J. Appl. Phys. 94 5609 [34] Lee S H, Kim J, Kim S J, Kim S and Park G S 2013 Phys. Rev. Lett. 110 235502 [35] Yang Y and Kawazoe Y 2018 Phys. Rev. Mater. 2 034602 [36] Tong Y W, Tang H M and Yang Y 2023 Comp. Mater. Sci. 230 112482 [37] Zheng B, Chen T, Sun H, Yang M, Yang B, Chen X, Zhang Y and Liu X 2024 Chin. Phys. Lett. 41 057301 [38] Wang Y Q, Zhang C Z, Zhang J Q, Li S, Ju M, Sun W G, Dou X L and Jin Y Y 2023 Chin. Phys. B 32 97402 [39] Qin T, Wu M, Wang K, Wu Y and Huang H 2024 Chin. Phys. B 33 118101 [40] Zibrov I P, Filonenko V P, Sundberg M and Werner P E 2000 Acta Crystallogr. Sect. B 56 659 [41] Markland T E and Ceriotti M 2018 Nat. Rev. Chem. 2 0109 [42] Morales M A, McMahon J M, Pierleoni C and Ceperley D M 2013 Phys. Rev. Lett. 110 065702 [43] Litman Y, Donadio D, Ceriotti M and Rossi M 2018 J. Chem. Phys. 148 102320 [44] McKenzie R H, Bekker C, Athokpam B and Ramesh S G 2014 J. Chem. Phys. 140 174508 [45] Andreani C, Colognesi D, Pietropaolo A and Senesi R 2011 Chem. Phys. Lett. 518 1 [46] Senesi R, Flammini D, Kolesnikov A I, Murray E D, Galli G and Andreani C 2013 J. Chem. Phys. 139 074504 [47] Meng X Z, Guo J, Peng J B, Chen J, Wang Z C, Shi J R, Li X Z, Wang E G and Jiang Y 2015 Nat. Phys. 11 235 [48] Guo J, Lü J T, Feng Y X, Chen J, Peng J B, Lin Z, Meng X Z, Wang Z C, Li X Z, Wang E G and Jiang Y 2016 Science 352 321 [49] Guo J, Li X, Peng J, Wang E G and Jiang Y 2017 Prog. Surf. Sci. 92 203 [50] Wang E G 2024 Full Quantum Effects in Condensed Matter Physics (Beijing: Science Press) [51] Yang Y and Kawazoe Y 2019 J. Phys. Chem. C 123 13804 [52] Bi C and Yang Y 2021 J. Phys. Chem. C 125 464 [53] Tong Y W and Yang Y 2024 Chin. Phys. Lett. 41 086801 [54] Bi C, Chen Q, Li W and Yang Y 2021 Chin. Phys. B 30 046601 [55] Tong Y W and Yang Y 2024 J. Phys. Chem. C 128 840 [56] Lu B B, Kang D D, Wang D, Gao T Y and Dai J Y 2019 Chin. Phys. Lett. 36 103102 [57] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [58] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [59] Oganov A R and Glass C W 2006 J. Phys. Chem. C 124 244704 [60] Zhu Q, Li L, Oganov A R and Allen P B 2013 Phys. Rev. B 87 195317 [61] Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116 [62] Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063 [63] Zhang X, Wang Y, Lv J, Zhu C, Li Q, Zhang M, Li Q and Ma Y 2013 J. Chem. Phys. 138 114101 [64] Xu Z Z, Li J F, Geng Y L, Zhang Z B, Lv Y, Zhang C, Wang Q L and Wang X L 2023 Chin. Phys. Lett. 40 076201 [65] Qu N R, Wang H C, Li Q, Li Z P and Gao F M 2019 Chin. Phys. Lett. 36 036201 [66] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [67] Hedin L 1965 Phys. Rev. 139 A796 [68] Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390 [69] Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515 [70] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063 [71] Yang Y, Meng S and Wang E G 2006 J. Phys.: Condens. Matter 18 10165 [72] Born M and Huang K 1954 Dynamical Theory Of Crystal Lattices (London: Oxford University Press) [73] Huang K and Han R Q 1988 Solid State Physics (Beijing: Higher Education Press) [74] Birch F 1947 Phys. Rev. 71 809 [75] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244 [76] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Comput. Phys. Commun. 267 108033 [77] Murnaghan F D 1937 Am. J. Math. 59 235 [78] Katsura T and Tange Y 2019 Minerals 9 745 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|