Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(11): 116104    DOI: 10.1088/1674-1056/ae0925
RAPID COMMUNICATION Prev   Next  

Possible orthorhombic phase of Ta2O5 under high pressures

Yan Gong(龚艳)1,2, Hui-Min Tang(唐慧敏)3, Yong Yang(杨勇)1,2,†, and Yoshiyuki Kawazoe4,5
1 Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China;
2 Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China;
3 College of Physics and Technology, Guangxi Normal University, Guilin 541004, China;
4 New Industry Creation Hatchery Center (NICHe), Tohoku University, 6-6-4 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan;
5 Department of Physics, SRM University-AP, Amaravati 522240, Andhra Pradesh, India
Abstract  A potential orthorhombic phase of Ta2O5, designated as Y-Ta2O5, is predicted under high-pressure conditions using density functional theory (DFT) combined with structural search algorithms. This phase, containing four formula units per unit cell (Z = 4), exhibits the highest Ta–O coordination numbers reported to date. Y-Ta2O5 is identified as the most energetically stable form of Ta2O5 within the pressure range of approximately 70 GPa to at least 200 GPa. Both standard DFT-GGA and higher-accuracy GW calculations indicate that Y-Ta2O5 is a wide-bandgap semiconductor with a direct bandgap. Furthermore, nuclear quantum effects (NQEs) introduce nontrivial corrections to external pressure at fixed volumes, underscoring their significance in high-pressure phase stability analyses.
Keywords:  Ta2O5      high-pressure      orthorhombic phase      first-principles      nuclear quantum effects  
Received:  07 August 2025      Revised:  08 September 2025      Accepted manuscript online:  19 September 2025
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  63.20.dk (First-principles theory)  
  71.20.Nr (Semiconductor compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074382, 11474285, and 12464012). We would like to thank Professor E. G. Wang for reading and helpful comments on the manuscript. We are grateful to the staff of the Hefei Branch of Supercomputing Center of Chinese Academy of Sciences, and the Hefei Advanced Computing Center for support of supercomputing facilities. We also thank the crew of the Center for Computational Materials Science, Institute for Materials Research of Tohoku University, and the supercomputer resources through the HPCI System Research Project (hp200246).
Corresponding Authors:  Yong Yang     E-mail:  yyanglab@issp.ac.cn

Cite this article: 

Yan Gong(龚艳), Hui-Min Tang(唐慧敏), Yong Yang(杨勇), and Yoshiyuki Kawazoe Possible orthorhombic phase of Ta2O5 under high pressures 2025 Chin. Phys. B 34 116104

[1] Chu A K, Lu Y Y and Lin Y Y 2019 Opt. Express 27 6629
[2] Lamee K F, Carlson D R, Newman Z L, Yu S P and Papp S B 2020 Opt. Lett. 45 4192
[3] Zhang Z, Liu R, Wang W, Yan K, Yang Z, Song M, Wu D, Xu P, Wang X and Wang R 2023 Opt. Lett. 48 5799
[4] Song S G, Cai S J, Han D X, García Nunez C, Zhang G, Wallace G, Fleming L, Craig K, Reid S, Martin I W, Rowan S and Gibson D 2023 Appl. Opt. 62 B73
[5] Liu L F, Pan L Y, Zhang Z G and Xu J 2015 Chin. Phys. Lett. 32 088501
[6] Sun S, Gao L, Han P, Zhu L, LiWM and Li A D 2024 J. Mater. Chem. C 12 18676
[7] Wedig A, Luebben M, Cho D Y, Moors M, Skaja K, Rana V, Hasegawa T, Adepalli K K, Yildiz B,Waser R and Valov I 2016 Nat. Nanotechnol. 11 67
[8] Kingon A I, Maria J P and Streiffer S K 2000 Nature 406 1032
[9] Waser R, Dittmann R, Staikov G and Szot K 2009 Adv. Mater. 21 2632
[10] Huerta-Flores A M, Ruiz-Zepeda F, Eyovge C, Winczewski J P, Vandichel M, Gaberscek M, Boscher N D, Gardeniers H, Torres- Martinez L M and Susarrey-Arce A 2022 ACS Appl. Mater. Interfaces 14 31767
[11] Li R Y, Zhang Q Q, Li X S, Li N N, Liu X H and Li Z J 2025 J. Electroanal. Chem. 990 119163
[12] Osuagwu B, Raza W, Tesler A B and Schmuki P 2021 Nanoscale 13 12750
[13] Narangari P R, Karuturi S K, Wu Y, Wong-Leung J, Vora K, Lysevych M, Wan Y, Tan H H, Jagadish C and Mokkapati S 2019 Nanoscale 11 7497
[14] Polydorou E, Verouti M, Soultati A, Armadorou K K, Verykios A, Filippatos P P, Galanis G, Tourlouki K, Kehayias N, Karatasios I, Kuganathan N, Chroneos A, Kilikoglou V, Palilis L C, Argitis P, Davazoglou D, Fakharuddin A, Mohd Yusoff A R b and Vasilopoulou M 2022 Org. Electron. 108 106607
[15] Wang C, Zhou C H, Wang J G, Cho Y S, Wu W Y, Wuu D S, Huang C J and Lien S Y 2025 Ceram. Int. 51 28791
[16] Singh E R, Almulhem N K, Alam M W and Singh N K 2024 Opt. Mater. 155 115858
[17] Le Y, Ma X C, Xiao H D, Luan C N, Zhang B and Ma J 2023 Appl. Phys. Lett. 122 252103
[18] Hosseini M, Khalil-Allafi J, Safavi M S and Ghalandarzadeh A 2025 J. Alloys Compd. 1023 180193
[19] Hosseini M, Khalil-Allafi J and SafaviMS 2024 J. Mater. Res. Technol. 33 4055
[20] Rafieerad A, Yan W, Alagarsamy K N, Srivastava A, Sareen N, Arora R C and Dhingra S 2021 Adv. Funct. Mater. 31 2106786
[21] Lawson T, Joenathan A, Patwa A, Snyder B D and GrinstaffMW2021 ACS Nano 15 19175
[22] Bratash O, Courson R, Malaquin L, Leichle T, Buhot A, Leroy L and Engel E 2025 Adv. Mater. Interfaces 12 2400941
[23] Rahman S, AzharuddinMand Tabassum R 2024 Mater. Sci. Semicond. Process. 178 108457
[24] Pérez-Walton S, Valencia-Balvín C, Padilha A C M, Dalpian G M and Osorio-Guillén J M 2016 J. Phys.: Condens. Matter 28 035801
[25] Terao N 1967 Jpn. J. Appl. Phys. 6 21
[26] Zibrov I P, Filonenko V P, Sundberg M and Werner P E 2000 Acta Crystallogr. B 56 659
[27] Tang H M and Yang Y 2024 Chin. J. Phys. 89 1678
[28] Stephenson N C and Roth R S 1971 Acta Crystallogr. Sect. B 27 1037
[29] Grey I E, Mumme W G and Roth R S 2005 J. Solid State Chem. 178 3308
[30] Hummel H U, Fackler R and Remmert P 2006 Chem. Ber. 125 551
[31] Fukumoto A and Miwa K 1997 Phys. Rev. B 55 11155
[32] Aleshina L A and Loginova S V 2002 Crystallogr. Rep. 47 415
[33] Ramprasad R 2003 J. Appl. Phys. 94 5609
[34] Lee S H, Kim J, Kim S J, Kim S and Park G S 2013 Phys. Rev. Lett. 110 235502
[35] Yang Y and Kawazoe Y 2018 Phys. Rev. Mater. 2 034602
[36] Tong Y W, Tang H M and Yang Y 2023 Comp. Mater. Sci. 230 112482
[37] Zheng B, Chen T, Sun H, Yang M, Yang B, Chen X, Zhang Y and Liu X 2024 Chin. Phys. Lett. 41 057301
[38] Wang Y Q, Zhang C Z, Zhang J Q, Li S, Ju M, Sun W G, Dou X L and Jin Y Y 2023 Chin. Phys. B 32 97402
[39] Qin T, Wu M, Wang K, Wu Y and Huang H 2024 Chin. Phys. B 33 118101
[40] Zibrov I P, Filonenko V P, Sundberg M and Werner P E 2000 Acta Crystallogr. Sect. B 56 659
[41] Markland T E and Ceriotti M 2018 Nat. Rev. Chem. 2 0109
[42] Morales M A, McMahon J M, Pierleoni C and Ceperley D M 2013 Phys. Rev. Lett. 110 065702
[43] Litman Y, Donadio D, Ceriotti M and Rossi M 2018 J. Chem. Phys. 148 102320
[44] McKenzie R H, Bekker C, Athokpam B and Ramesh S G 2014 J. Chem. Phys. 140 174508
[45] Andreani C, Colognesi D, Pietropaolo A and Senesi R 2011 Chem. Phys. Lett. 518 1
[46] Senesi R, Flammini D, Kolesnikov A I, Murray E D, Galli G and Andreani C 2013 J. Chem. Phys. 139 074504
[47] Meng X Z, Guo J, Peng J B, Chen J, Wang Z C, Shi J R, Li X Z, Wang E G and Jiang Y 2015 Nat. Phys. 11 235
[48] Guo J, Lü J T, Feng Y X, Chen J, Peng J B, Lin Z, Meng X Z, Wang Z C, Li X Z, Wang E G and Jiang Y 2016 Science 352 321
[49] Guo J, Li X, Peng J, Wang E G and Jiang Y 2017 Prog. Surf. Sci. 92 203
[50] Wang E G 2024 Full Quantum Effects in Condensed Matter Physics (Beijing: Science Press)
[51] Yang Y and Kawazoe Y 2019 J. Phys. Chem. C 123 13804
[52] Bi C and Yang Y 2021 J. Phys. Chem. C 125 464
[53] Tong Y W and Yang Y 2024 Chin. Phys. Lett. 41 086801
[54] Bi C, Chen Q, Li W and Yang Y 2021 Chin. Phys. B 30 046601
[55] Tong Y W and Yang Y 2024 J. Phys. Chem. C 128 840
[56] Lu B B, Kang D D, Wang D, Gao T Y and Dai J Y 2019 Chin. Phys. Lett. 36 103102
[57] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[58] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[59] Oganov A R and Glass C W 2006 J. Phys. Chem. C 124 244704
[60] Zhu Q, Li L, Oganov A R and Allen P B 2013 Phys. Rev. B 87 195317
[61] Wang Y C, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
[62] Wang Y C, Lv J, Zhu L and Ma Y M 2012 Comput. Phys. Commun. 183 2063
[63] Zhang X, Wang Y, Lv J, Zhu C, Li Q, Zhang M, Li Q and Ma Y 2013 J. Chem. Phys. 138 114101
[64] Xu Z Z, Li J F, Geng Y L, Zhang Z B, Lv Y, Zhang C, Wang Q L and Wang X L 2023 Chin. Phys. Lett. 40 076201
[65] Qu N R, Wang H C, Li Q, Li Z P and Gao F M 2019 Chin. Phys. Lett. 36 036201
[66] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[67] Hedin L 1965 Phys. Rev. 139 A796
[68] Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390
[69] Baroni S, De Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[70] Parlinski K, Li Z Q and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[71] Yang Y, Meng S and Wang E G 2006 J. Phys.: Condens. Matter 18 10165
[72] Born M and Huang K 1954 Dynamical Theory Of Crystal Lattices (London: Oxford University Press)
[73] Huang K and Han R Q 1988 Solid State Physics (Beijing: Higher Education Press)
[74] Birch F 1947 Phys. Rev. 71 809
[75] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[76] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Comput. Phys. Commun. 267 108033
[77] Murnaghan F D 1937 Am. J. Math. 59 235
[78] Katsura T and Tange Y 2019 Minerals 9 745
[1] Site occupation of Al doping in Lu2SiO5: The role of ionic radius versus chemical valence
Xuejiao Sun(孙雪娇), Yu Cui(崔宇), Feng Gao(高峰), Zhongjun Xue(薛中军), Shuwen Zhao(赵书文), Dongzhou Ding(丁栋舟), Fan Yang(杨帆), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2025, 34(9): 096101.
[2] Physical properties of high-pressure synthesized Al65Cu20Fe15 quasicrystal
Yibo Liu(刘一博), Changzeng Fan(范长增), Zhefeng Xu(许哲峰), Ruidong Fu(付瑞东), Feng Ke(柯峰), Lin Wang(王霖), Bin Wen(温斌), Lifeng Zhang(张立峰), Marek Mihalkovič, and Bo Xu(徐波). Chin. Phys. B, 2025, 34(9): 096103.
[3] Superconductivity and band topology of double-layer honeycomb structure M2N2 (M = Nb, Ta)
Jin-Han Tan(谭锦函), Na Jiao(焦娜), Meng-Meng Zheng(郑萌萌), Ping Zhang(张平), and Hong-Yan Lu(路洪艳). Chin. Phys. B, 2025, 34(9): 097402.
[4] First-principles design of excitonic insulators: A review
Hongwei Qu(曲宏伟), Haitao Liu(刘海涛), and Yuanchang Li(李元昌). Chin. Phys. B, 2025, 34(9): 097101.
[5] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[6] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[7] Structure and properties of MgO melt at high pressure: A first-principles study
Min Wu(吴旻) and Zhongsen Sun(孙忠森). Chin. Phys. B, 2025, 34(8): 086301.
[8] First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si
Zi-Kai Zhou(周子凯) and Jun Kang(康俊). Chin. Phys. B, 2025, 34(8): 087102.
[9] Pressure distribution imaging through wide-field optical detected magnetic resonance
Chaofan Lv(吕超凡), Kai Ma(马凯), Feihu Lei(雷飞虎), Yidan Qu(屈怡丹), Qilong Wu(吴琦隆), Wuyou Zhang(张吾优), Yingjie Zhang(张英杰), Huihui Yu(余辉辉), Xuanming Shen(申炫铭), Yuan Zhang(张元), Xigui Yang(杨西贵), and Chongxin Shan(单崇新). Chin. Phys. B, 2025, 34(8): 087601.
[10] Pressure-induced metallization and Lifshitz transition in quasi-one-dimensional TiSe3 single crystal
Zhenhai Yu(于振海), Yunguan Ye(叶运观), Pengtao Yang(杨芃焘), Yiming Wang(王弈铭), Liucheng Chen(陈刘城), Chenglin Li(李承霖), Jian Yuan(袁健), Ziyi Liu(刘子儀), Zhiwei Shen(申志伟), Shaojie Wang(王邵杰), Mingtao Li(李明涛), Chaoyang Chu(楚朝阳), Xia Wang(王霞), Jun Li(李俊), Lin Wang(王霖), Wenge Yang(杨文革), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2025, 34(8): 088102.
[11] Theoretical investigation on the H sublattice in CaH6 and energetic performance
Zhihong Huang(黄植泓), Nan Li(李楠), Jun Zhang(张俊), Xiuyuan Li(李修远), Zihuan Peng(彭梓桓), Chongwen Jiang(江崇文), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086202.
[12] High-pressure synthesis of an oxynitride perovskite CeNbO2N with Nb4+ charge state
Shengjie Liu(刘胜杰), Xubin Ye(叶旭斌), Zhao Pan(潘昭), Jie Zhang(张杰), Shuai Tang(唐帅), Guangkai Zhang(张广凯), Maocai Pi(皮茂材), Zhiwei Hu(胡志伟), Chien-Te Chen(陈建德), Ting-Shan Chan(詹丁山), Cheng Dong(董成), Tian Cui(崔田), Yanping Huang(黄艳萍), Zhenhua Chi(迟振华), Yao Shen(沈瑶), and Youwen Long(龙有文). Chin. Phys. B, 2025, 34(6): 066202.
[13] Iron nitrides: High-pressure synthesis, nitrogen disordering and local magnetic moment
Yu Tao(陶雨) and Li Lei(雷力). Chin. Phys. B, 2025, 34(6): 068301.
[14] Interfacial design and thermoelectric properties of C3N4-C20 molecular junctions based on quantum interference
Shutao Hu(胡澍涛), Meng Qian(钱萌), Gang Zhang(张刚), and Bei Zhang(张蓓). Chin. Phys. B, 2025, 34(6): 068903.
[15] Effective strategy of enhancing piezoelectricity in stable CrSiN4Sn semiconductor monolayers by atom-layer-pair effect
Qi-Wen He(贺绮雯), Dan-Yang Zhu(朱丹阳), Jun-Hui Wang(王俊辉), He-Na Zhang(张贺娜), Xiao Shang(尚骁), Shou-Xin Cui(崔守鑫), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2025, 34(5): 057701.
No Suggested Reading articles found!