Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 020302    DOI: 10.1088/1674-1056/adec5d
GENERAL Prev   Next  

Geometric control of concurrence and quantum gate operations in triangular triple quantum dots

Junqing Li(李俊青)†, Shuo Dong(董硕), and Jianhua Wei(魏建华)‡
Department of Physics, Renmin University of China, Beijing 100876, China
Abstract  As an important index to measure the degree of entanglement in quantum systems, concurrence plays an important role in practical research. In this paper, we study the concurrence between two qubits in triangular triple quantum dot structure. Through calculation and simulation, it is found that concurrence is mainly affected by the interdot coupling strength $t$, Coulomb interaction $U$, temperature $T$, and electrode coupling $\varGamma$. Through comparative studies with parallel triple quantum dot structures, we demonstrate that the triangular geometry exhibits significantly enhanced concurrence under identical conditions. In addition, under the condition that concurrence exceeds 0.9, the functional relationship between $t$ and $U$ is obtained through simulation, which provides theoretical support for quantum dot regulation under high entanglement. Finally, we demonstrate the feasibility of implementing a three-qubit quantum gate, using the Toffoli gate as a representative example, under the condition that the triangular triple quantum dot system maintains high entanglement.
Keywords:  transition coupling interaction      triangular triple quantum dots      quantum entanglement      Coulomb interaction      quantum computing  
Received:  06 May 2025      Revised:  07 July 2025      Accepted manuscript online:  07 July 2025
PACS:  03.67.Bg (Entanglement production and manipulation)  
  81.07.Ta (Quantum dots)  
  03.67.Hk (Quantum communication)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: This work is supported by the National Natural Science Foundation of China (Grant Nos. 12274454, 11774418, 11374363, 11674317, 11974348, 11834014, and 21373191), the Strategic Priority Research Program of CAS (Grant Nos. XDB28000000 and XDB33000000), the Training Program of Major Research Plan of the National Natural Science Foundation of China (Grant No. 92165105), the Outstanding Innovative Talents Cultivation Funded Programs 2023 of Renmin University of China, the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China.
Corresponding Authors:  Junqing Li, Jianhua Wei     E-mail:  lijunqing@ruc.edu.cn;wjh@ruc.edu.cn

Cite this article: 

Junqing Li(李俊青), Shuo Dong(董硕), and Jianhua Wei(魏建华) Geometric control of concurrence and quantum gate operations in triangular triple quantum dots 2026 Chin. Phys. B 35 020302

[1] Chen K, Albeverio S and Fei S M 2005 Phys. Rev. Lett. 95 040504
[2] Mintert F, Marek K and Buchleitner A 2006 Phys. Rev. Lett. 95 260502
[3] Uhlmann A 2000 Phys. Rev. A 62 032307
[4] Rafsanjani S M H, Huber M, Broadbent C J and Eberly J H 2012 Phys. Rev. A 86 062303
[5] Majtey A P, Bouvrie P A, Valdes-Hernandez A and Plastino A R 2016 Phys. Rev. A 93 032335
[6] Akhtarshenas S J 2010 Phys. Rev. A 83 042306
[7] Yugra Y, Montenegro C and Zela F D 2022 Phys. Rev. A 105 063710
[8] Walborn S P, Souto Ribeiro P H, Davidovich L, Mintert F and Buchleitner A 2006 Nature 440 1022
[9] Krueger O and Werner R F 2005 Physics 99 425
[10] Barnett S M and Phoenix S J D 1991 Phys. Rev. A 44 535
[11] Buzek, Vladimir, Braunstein, S L and Hillery M 2000 Phys. Rev. A 63 052313
[12] Kastoryano M J, Reiter F and Sorensen A S 2011 Phys. Rev. Lett. 106 090502
[13] Levine H, Keesling A, Omran A, Bernien H, Schwartz S and Zibrov A S 2018 Phys. Rev. Lett. 121 123603
[14] Pan JW, Daniell M, Gasparoni S,Weihs G and Zeilinger A 2001 Phys. Rev. Lett. 86 4435
[15] Olivares S and Paris M G A 2011 Phys. Rev. Lett. 107 170505
[16] Inamori H, Rallan L and Vedral V 2001 J. Phys. A: Gen. Phys. 34 6913
[17] Zhang Z, Mower J, Englund D, Wong F N C and Shapiro J H 2014 Phys. Rev. Lett. 112 120506
[18] Devetak I 2006 Phys. Rev. Lett. 97 140503
[19] Buhrman H, Christandl M, Perry C and Zuiddam J 2016 Phys. Rev. Lett. 117 230503
[20] Liu Y, Ju L, Liang X L, Tang S B, Tu G L S and Zhou L 2012 Phys. Rev. Lett. 109 030501
[21] Portella-Oberli M T, Ciulin V, Berney J H, Deveaud B and Wojtowicz T 2012 Phys. Rev. B 69 235311
[22] Gagliano E R and Balseiro C A 1988 Phys. Rev. B 38 11766
[23] Slagle K, Bi Z, You Y Z and Xu C 2017 Phys. Rev. B 95 165136
[24] Hu J, Luo M, Jiang F, Xu R X and Yan Y J 2011 J. Chem. Phys. 134 101106
[25] Li Z H, Tong N H, Zheng X, Hou D,Wei J H and Hu J 2012 Phys. Rev. Lett. 109 266403
[26] Wang Y D, Zhu Z G, Wei J H and Yan Y J 2020 Eruophys. Lett. 130 17003
[27] Kehrein S K and Mielke A 1996 Ann. Phys. 252 1
[28] Anders F B, Lebanon E and Schiller A 2004 Phys. Rev. B 70 201306(R)
[29] Cheng Y X,Wang Y D,Wei J H, Zhu Z G and Yan Y J 2017 Phys. Rev. B 95 155417
[30] Wang Y D, Ni J H and Wei J H 2017 Phys. Rev. B 96 245426
[31] Weymann I, Bulka B R and Barnas J 2011 Phys. Rev. B 83 113306
[32] Cheng Y X, Hou W J, Wang Y D, Li Z H, Wei J H and Yan Y J 2015 New. J. Phys. 17 33009
[33] Busser C A and Heidrich-Meisner F 2013 Phys. Rev. Lett. 111 246807
[34] Ishiwata S, Taguchi Y, Murakawa H, Onose Y and Tokura Y 2008 Science 319 1643
[35] Brandt and Helmut E 1996 Phys. Rev. B 54 4246
[36] Jouravlev O N and Nazarov Y V 2006 Phys. Rev. Lett. 96 176804
[37] Ashoori R C, Stormer H L,Weiner J S, Pfeiffer L N, Baldwin KWand West K W 1993 Phys. Rev. Lett. 71 613
[38] Liang C T, Simmons M Y, Smith C G, Kim G H, Ritchie D A and Pepper M 2012 Phys. Rev. Lett. 81 3507
[39] Williams C P 2011 Explorations in Quantum Computing (Santa Clara, CA, United States) pp.99
[40] Griffiths D J 2013 Introduction to Electrodynamics 4th Ed. (Pearson)
[41] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217
[42] Shende V V and Markov I L 2009 Quantum. Inf. Comput. 9 461
[43] Wang X and Zanardi P 2002 Phys. Rev. A 301 1
[44] Qi Y and Wei J H 2024 Chin. Phys. B 33 57301
[45] Qi Y, Liu Y M, Wang Y D, Wei J H and Zhu Z G 2023 Chin. Phys. B 32 087304
[1] Enhancing thermodynamic performances and suppressing fluctuations in interacting quantum-dot thermoelectric engines
Jianhan Zhuang(庄剑涵), Qinyan Zou(邹沁研), Ziming Wang(王子明), Gaoyuan Chen(陈高远), Jian Sun(孙坚), Xiang Hao(郝翔), Chen Wang(王晨), and Jincheng Lu(陆金成). Chin. Phys. B, 2026, 35(1): 010508.
[2] Preparation of digital-encoded and analog-encoded quantum states corresponding to matrix operations
Kaitian Gao(高凯天), Youlong Yang(杨有龙), and Zhenye Du(杜振叶). Chin. Phys. B, 2026, 35(1): 010202.
[3] Planar: A software for exact decoding quantum error correction codes with planar structure
Dongyang Feng(冯东阳), Hanyan Cao(曹涵彦), and Pan Zhang(张潘). Chin. Phys. B, 2025, 34(5): 050311.
[4] Distributed quantum circuit partitioning and optimization based on combined spectral clustering and search tree strategies
Zilu Chen(陈子禄), Zhijin Guan(管致锦), Shuxian Zhao(赵书娴), and Xueyun Cheng(程学云). Chin. Phys. B, 2025, 34(5): 050305.
[5] RF detection of split-gate modes in Si-MOS quantum dots
Ning Chu(楚凝), Sheng-Kai Zhu(祝圣凯), Ao-Ran Li(李傲然), Chu Wang(王储), Wei-Zhu Liao(廖伟筑), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2025, 34(4): 040303.
[6] All-microwave CZ gate based on fixed-frequency driven coupler
Wanpeng Gao(高万鹏), Xiaoliang He(何潇梁), Zhengqi Niu(牛铮琦), Daqiang Bao(包大强), Kuang Liu(刘匡), Junfeng Chen(陈俊锋), Zhen Wang(王镇), and Z. R. Lin(林志荣). Chin. Phys. B, 2025, 34(4): 040304.
[7] Robust quantum gate optimization with first-order derivatives of ion-phonon and ion-ion couplings in trapped ions
Jing-Bo Wang(汪景波). Chin. Phys. B, 2025, 34(4): 040302.
[8] A pure quantum secret sharing scheme based on GHZ basis measurement and quantum entanglement exchange
Bai Liu(刘白), Jun Zhang(张俊), Shupin Qiu(邱书品), and Mingwu Zhang(张明武). Chin. Phys. B, 2025, 34(3): 030304.
[9] Enhancing entanglement and steering in a hybrid atom-optomechanical system via Duffing nonlinearity
Ling-Hui Dong(董凌晖), Xiao-Jie Wu(武晓捷), Cheng-Hua Bai(白成华), and Shao-Xiong Wu(武少雄). Chin. Phys. B, 2025, 34(2): 020304.
[10] Efficient fault-tolerant circuit for preparing quantum uniform superposition states via quantum measurement
Xiang-Qun Fu(付向群), Tian-Ci Tian(田天赐), Hong-Wei Li(李宏伟), Jian-Hong Shi(史建红), Xiao-Liang Yang(杨晓亮), Tan Li(李坦), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2025, 34(12): 120303.
[11] Exact quantum algorithm for unit commitment optimization based on partially connected quantum neural networks
Jian Liu(刘键), Xu Zhou(周旭), Zhuojun Zhou(周卓俊), and Le Luo(罗乐). Chin. Phys. B, 2025, 34(10): 100303.
[12] Established conversions for hybrid entangled states assisted by error-predicted parity-discriminated devices
Fang-Fang Du(杜芳芳), Zhi-Guo Fan(范志国), Xue-Mei Ren(任雪梅), Ming Ma(马明), and Wen-Yao Liu(刘文耀). Chin. Phys. B, 2025, 34(1): 010303.
[13] Generation of macroscopic entanglement in ensemble systems based on silicon vacancy centers
Jian-Zhuang Wu(武建壮), Ying Xi(奚滢), Bo-Ya Li(李博雅), Lian-E Lu(芦连娥), and Yong-Hong Ma(马永红). Chin. Phys. B, 2024, 33(9): 090308.
[14] Delayed-measurement one-way quantum computing on cloud quantum computer
Zhi-Peng Yang(杨智鹏), Yu-Ran Zhang(张煜然), Fu-Li Li(李福利), and Heng Fan(范桁). Chin. Phys. B, 2024, 33(9): 090304.
[15] A family of quantum von Neumann architecture
Dong-Sheng Wang(王东升). Chin. Phys. B, 2024, 33(8): 080302.
No Suggested Reading articles found!