Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 020304    DOI: 10.1088/1674-1056/ad9ba2
GENERAL Prev   Next  

Enhancing entanglement and steering in a hybrid atom-optomechanical system via Duffing nonlinearity

Ling-Hui Dong(董凌晖), Xiao-Jie Wu(武晓捷), Cheng-Hua Bai(白成华), and Shao-Xiong Wu(武少雄)†
School of Semiconductor and Physics, North University of China, Taiyuan 030051, China
Abstract  We introduce a novel scheme for achieving quantum entanglement and Einstein-Podolsky-Rosen (EPR) steering between an atomic ensemble and a mechanical oscillator within a hybrid atom-optomechanical system. The system comprises an optical cavity, a two-level atomic ensemble and a mechanical resonator that possesses Duffing nonlinearity. The interaction between these components is mediated by the cavity mode, which is driven by an external laser. Our findings indicate that optimizing the coupling strengths between photons and phonons, as well as between atoms and the cavity, leads to maximal entanglement and EPR steering. The amplitude of the driving laser plays a pivotal role in enhancing the coupling between photons and phonons, and the system maintains robust entanglement and EPR steering even under high dissipation, thereby mitigating the constraints on initial conditions and parameter precision. Remarkably, the Duffing nonlinearity enhances the system's resistance to thermal noise, ensuring its stability and entanglement protection. Our analysis of EPR steering conditions reveals that the party with lower dissipation exhibits superior stability and a propensity to steer the party with higher dissipation. These discoveries offer novel perspectives for advancing quantum information processing and communication technologies.
Keywords:  quantum entanglement      EPR steering      optomechanical system      Duffing nonlinearity  
Received:  14 September 2024      Revised:  31 October 2024      Accepted manuscript online:  09 December 2024
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12204440) and Fundamental Research Program of Shanxi Province (Grant Nos. 20210302123063 and 202103021223184).
Corresponding Authors:  Shao-Xiong Wu     E-mail:  sxwu@nuc.edu.cn

Cite this article: 

Ling-Hui Dong(董凌晖), Xiao-Jie Wu(武晓捷), Cheng-Hua Bai(白成华), and Shao-Xiong Wu(武少雄) Enhancing entanglement and steering in a hybrid atom-optomechanical system via Duffing nonlinearity 2025 Chin. Phys. B 34 020304

[1] Lanyon B P, Weinhold T J, Langford N K, Barbieri M, James D F V, Gilchrist A and White A G 2007 Phys. Rev. Lett. 99 250505
[2] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[3] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[4] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[5] Hu M J, Hu X M and Zhang Y S 2024 Chin. Phys. Lett. 41 050302
[6] Li J, Zhou Y and Wang Q 2022 Chin. Phys. Lett. 39 110301
[7] Vitali D, Gigan S, Ferreira A, Böhm H R, Tombesi P, Guerreiro A, Vedral V, Zeilinger A and Aspelmeyer M 2007 Phys. Rev. Lett. 98 030405
[8] Barzanjeh S, Vitali D, Tombesi P and Milburn G J 2011 Phys. Rev. A 84 042342
[9] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391
[10] Yang Q, Hou B P and Lai D G 2017 Opt. Express 25 9697
[11] Ma P C, Zhang J Q, Xiao Y, Feng M and Zhang Z M 2014 Phys. Rev. A 90 043825
[12] Wu Q, Zhang J Q, Wu J H, Feng M and Zhang Z M 2015 Opt. Express 23 18534
[13] Qin G Q, Yang H, Mao X, Wen J W, Wang M, Ruan D and Long G L 2020 Opt. Express 28 580
[14] Shang C, Shen H Z and Yi X X 2019 Opt. Express 27 25882
[15] Jiang Y J, Zhao X D, Xia S Q, Yang C J, Liu W M and Zhu Z L 2022 Chin. Phys. Lett. 39 124202
[16] Xie H, Shang X, Liao C G, Chen Z H and Lin X M 2019 Phys. Rev. A 100 033803
[17] Tan H, Bariani F, Li G and Meystre P 2013 Phys. Rev. A 88 023817
[18] Peng R, Yang Z, Wang D and Zhou L 2023 Opt. Express 31 35754
[19] Jähne K, Genes C, Hammerer K, Wallquist M, Polzik E S and Zoller P 2009 Phys. Rev. A 79 063819
[20] Huang S and Chen A 2020 Phys. Rev. A 102 023503
[21] Guo Y, Guo X, Li P, Shen H, Zhang J and Zhang T 2018 Ann. Phys. 530 1800138
[22] Wu X J, Cheng H H, Wu Q, Bai C H and Wu S X 2024 Opt. Express 32 35663
[23] Li W, Li C and Song H 2016 Phys. Rev. E 93 062221
[24] Genes C, Vitali D, Tombesi P, Gigan S and Aspelmeyer M 2008 Phys. Rev. A 77 033804
[25] Chen X, Liu Y C, Peng P, Zhi Y and Xiao Y F 2015 Phys. Rev. A 92 033841
[26] Liu Y C, Xiao Y F, Luan X, Gong Q and Wong C W 2015 Phys. Rev. A 91 033818
[27] Lai D G, Huang J F, Yin X L, Hou B P, LiW, Vitali D, Nori F and Liao J Q 2020 Phys. Rev. A 102 011502
[28] Zhang X Y, Zhou Y H, Guo Y Q and Yi X X 2019 Phys. Rev. A 100 023807
[29] Liu J X, Yang J Y, Lu T X, Jiao Y F and Jing H 2024 Phys. Rev. A 109 023519
[30] Miki D, Matsumoto N, Matsumura A, Shichijo T, Sugiyama Y, Yamamoto K and Yamamoto N 2023 Phys. Rev. A 107 032410
[31] Asjad M, Tombesi P and Vitali D 2016 Phys. Rev. A 94 052312
[32] Luo Y and Tan H 2020 Quantum Sci. Technol. 5 045023
[33] Yang J, Lu T X, Peng M, Liu J, Jiao Y F and Jing H 2024 Opt. Express 32 785
[34] Qin W, Miranowicz A, Li P B, Lü X Y, You J Q and Nori F 2018 Phys. Rev. Lett. 120 093601
[35] Hu C S, Shen L T, Yang Z B, Wu H, Li Y and Zheng S B 2019 Phys. Rev. A 100 043824
[36] Wei J N,Wang T, Zhang S andWang H F 2024 Adv. Quantum Technol. 7 2300374
[37] Cong L J, Luo Y X, Zheng Z G, Liu H Y, Ming Y and Yang R C 2023 Opt. Express 31 34021
[38] Wu S X, Bai C H, Li G, Yu C S and Zhang T 2023 J. Opt. Soc. Am. B 40 2885
[39] Luo Y X, Cong L J, Zheng Z G, Liu H Y, Ming Y and Yang R C 2023 Opt. Express 31 34764
[40] Chen Y T, Du L, Zhang Y and Wu J H 2021 Phys. Rev. A 103 053712
[41] Lai D G, Qin W, Hou B P, Miranowicz A and Nori F 2021 Phys. Rev. A 104 043521
[42] Shi Z C, Xia Y and Song J 2013 Quantum Inf. Process. 12 3179
[43] Liu Y Y, Zhang Z M, Liu J H, Wang J D and Yu Y F 2022 Chin. Phys. B 31 094203
[44] Huang W J, Fang M F and Xu X 2022 Chin. Phys. B 31 010301
[45] Sohail A, Hassan A, Ahmed R and Yu C S 2022 Quantum Inf. Process. 21 207
[46] Sohail A, Abbas Z, Ahmed R, Shahzad A, Akhtar N and Peng J X 2023 Ann. Phys. 535 2300087
[47] Liu Y, Cai Y, Xiang Y, Li F, Zhang Y and He Q 2019 Opt. Express 27 33070
[48] Wu S X, Bai C H, Li G, Yu C S and Zhang T 2024 Opt. Express 32 260
[49] Yang W Q, Leng X, Cheng J and Zhang W Z 2024 Chin. Phys. B 33 060313
[50] Li Y, Li C, Zhang J, Dong Y and Hu H 2023 Chin. Phys. B 32 044213
[51] Zhang J S and Chen A X 2020 Opt. Express 28 12827
[52] Wang D Y, Bai C H, Xing Y, Liu S, Zhang S andWang H F 2020 Phys. Rev. A 102 043705
[53] Ding Z and Zhang Y 2022 Chin. Phys. B 31 070304
[54] Gao X C, Wu X J, Bai C H, Wu S X and Yu C S 2023 Opt. Express 31 36796
[55] Lü X Y, Liao J Q, Tian L and Nori F 2015 Phys. Rev. A 91 013834
[56] Han X, Wang D Y, Bai C H, Cui W X, Zhang S and Wang H F 2019 Phys. Rev. A 100 033812
[57] Zhang J S and Chen A X 2020 Opt. Express 28 36620
[58] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
[59] ScullyMO and ZubairyMS 1997 Quantum Optics (Cambridge: Cambridge University Press)
[60] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[61] Kogias I, Lee A R, Ragy S and Adesso G 2015 Phys. Rev. Lett. 114 060403
[62] Jacobs K and Landahl A J 2009 Phys. Rev. Lett. 103 067201
[63] DeJesus E X and Kaufman C 1987 Phys. Rev. A 35 5288
[64] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
[65] Simon R 2000 Phys. Rev. Lett. 84 2726
[1] Established conversions for hybrid entangled states assisted by error-predicted parity-discriminated devices
Fang-Fang Du(杜芳芳), Zhi-Guo Fan(范志国), Xue-Mei Ren(任雪梅), Ming Ma(马明), and Wen-Yao Liu(刘文耀). Chin. Phys. B, 2025, 34(1): 010303.
[2] Enhanced mechanical squeezing in an optomechanical system via backward stimulated Brillouin scattering
Shan-Shan Chen(陈珊珊), Yi-Long Xie(谢亦龙), Jing-Jing Zhang(张京京), Na-Na Zhang(张娜娜), Yong-Rui Guo(郭永瑞), Huan Yang(杨桓), and Yong Ma(马勇). Chin. Phys. B, 2025, 34(1): 014201.
[3] Generation of macroscopic entanglement in ensemble systems based on silicon vacancy centers
Jian-Zhuang Wu(武建壮), Ying Xi(奚滢), Bo-Ya Li(李博雅), Lian-E Lu(芦连娥), and Yong-Hong Ma(马永红). Chin. Phys. B, 2024, 33(9): 090308.
[4] Delayed-measurement one-way quantum computing on cloud quantum computer
Zhi-Peng Yang(杨智鹏), Yu-Ran Zhang(张煜然), Fu-Li Li(李福利), and Heng Fan(范桁). Chin. Phys. B, 2024, 33(9): 090304.
[5] Entangling two levitated charged nanospheres through Coulomb interaction
Guoyao Li(李国耀) and Zhangqi Yin(尹璋琦). Chin. Phys. B, 2024, 33(7): 074205.
[6] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[7] Nonlinearly induced entanglement in dissipatively coupled optomechanical system
Wen-Quan Yang(杨文全), Xuan Leng(冷轩), Jiong Cheng(程泂), and Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2024, 33(6): 060313.
[8] Ascertaining the influences of auxiliary qubits on the Einstein-Podolsky-Rosen steering and its directions
Ling-Ling Xing(邢玲玲), Huan Yang(杨欢), Gang Zhang(张刚), and Min Kong(孔敏). Chin. Phys. B, 2024, 33(5): 050304.
[9] Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system
Jin-Song Huang(黄劲松), Hong-Wu Huang(黄红武), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉). Chin. Phys. B, 2024, 33(5): 050506.
[10] Nonlinear enhanced mass sensor based on optomechanical system
Xin-Xin Man(满鑫鑫), Jing Sun(孙静), Wen-Zhao Zhang(张闻钊), Lijuan Luo(罗丽娟), and Guangri Jin(金光日). Chin. Phys. B, 2024, 33(12): 120303.
[11] Generalized Einstein-Podolsky-Rosen steering paradox
Zhi-Jie Liu(刘志洁), Xing-Yan Fan(樊星言), Jie Zhou(周洁), Mi Xie(谢汨), and Jing-Ling Chen(陈景灵). Chin. Phys. B, 2024, 33(11): 110307.
[12] Nonreciprocal mechanical entanglement in a spinning optomechanical system
Shan-Shan Chen(陈珊珊), Jing-Jing Zhang(张京京), Jia-Neng Li(李嘉能), Na-Na Zhang(张娜娜), Yong-Rui Guo(郭永瑞), and Huan Yang(杨桓). Chin. Phys. B, 2024, 33(11): 110305.
[13] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[14] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[15] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
No Suggested Reading articles found!