Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 010202    DOI: 10.1088/1674-1056/ade3ad
GENERAL Prev   Next  

Preparation of digital-encoded and analog-encoded quantum states corresponding to matrix operations

Kaitian Gao(高凯天), Youlong Yang(杨有龙)†, and Zhenye Du(杜振叶)
School of Mathematics and Statistics, Xidian University, Xi'an 710126, China
Abstract  Efficient implementation of fundamental matrix operations on quantum computers, such as matrix products and Hadamard operations, holds significant potential for accelerating machine learning algorithms. A critical prerequisite for quantum implementations is the effective encoding of classical data into quantum states. We propose two quantum computing frameworks for preparing the distinct encoded states corresponding to matrix operations, including the matrix product, matrix sum, matrix Hadamard product and division. Quantum algorithms based on the digital encoding computing framework are capable of implementing the matrix Hadamard operation with a time complexity of $O({\rm poly} \log(mn/\epsilon))$ and the matrix product with a time complexity of $O({\rm poly} \log (mnl/ \epsilon))$, achieving an exponential speedup in contrast to the classical methods of $O(mn)$ and $O(mnl)$. Quantum algorithms based on the analog-encoding framework are capable of implementing the matrix Hadamard operation with a time complexity of $O(k_{1} \sqrt{mn} \cdot {\rm poly} \log(mn/\epsilon))$ and the matrix product with a time complexity of $O(k_{2} \sqrt{l} \cdot {\rm poly} \log (mnl/ \epsilon))$, where $k_{1}$ and $k_{2}$ are coefficients correlated with the elements of the matrix, achieving a square speedup in contrast to the classical counterparts. As applications, we construct an oracle that can access the trace of a matrix within logarithmic time, and propose several algorithms to respectively estimate the trace of a matrix, the trace of the product of two matrices, and the trace inner product of two matrices within logarithmic time.
Keywords:  quantum algorithm      matrix operation      digital and analog-encoded states      quantum computing  
Received:  21 April 2025      Revised:  10 June 2025      Accepted manuscript online:  12 June 2025
PACS:  02.70.-c (Computational techniques; simulations)  
  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
Fund: Authors are grateful to Professor You-Long Yang for the encouragement to study quantum algorithms. Project supported by the National Natural Science Foundation of China (Grant No. 61573266), the Natural Science Basic Research Program of Shaanxi (Grant No. 2021JM-133), and the Fundamental Research Funds for the Central Universities and the Innovation Fund of Xidian University (Grant No. YJSJ25009).
Corresponding Authors:  Youlong Yang     E-mail:  ylyang@mail.xidian.edu.cn

Cite this article: 

Kaitian Gao(高凯天), Youlong Yang(杨有龙), and Zhenye Du(杜振叶) Preparation of digital-encoded and analog-encoded quantum states corresponding to matrix operations 2026 Chin. Phys. B 35 010202

[1] Shor P W 1994 Proceedings 35th annual symposium on foundations of computer science (IEEE) pp. 124-134
[2] Grover L K 1996 In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing pp. 212-219
[3] Harrow A W, Hassidim A and Lloyd S 2009 Phys. Rev. Lett. 103 150502
[4] Childs A M, Kothari R and Somma R D 2017 SIAM Journal on Computing 46 1920
[5] Wossnig L, Zhao Z and Prakash A 2018 Phys. Rev. Lett. 120 050502
[6] Kerenidis I and Prakash A 2016 arXiv:1603.08675
[7] Nghiem N A and Wei T 2023 Phys. Lett. A. 488 129138
[8] Vedral V, Barenco A and Ekert A 1996 Phys. Rev. A 54 147
[9] Kotiyal S, Thapliyal H, and Ranganathan N 2014 In 2014 27th international conference on VLSI design and 2014 13rd international conference on embedded systems (IEEE) pp. 545-550
[10] Montaser R, Younes A and Abdel-Aty M 2019 Int. J. Theor. Phys. 58 167
[11] Lu X, Jiang N and Hu H 2018 Int. J. Theor. Phys 57 2575
[12] Nghiem N A, Sukeno H, Zhang S and Wei T 2025 Phys. Rev. A 111 012434
[13] Wang Q and Zhang Z 2024 Phys. Rev. A 110 012422
[14] Guo N, Mitarai K and Fujii K 2024 Phys. Rev. Res. 6 043227
[15] Nghiem N A 2024 Phys. Lett. A 514-515 129610
[16] Vittorio G, Seth L and Lotenzo M 2008 Phys. Rev. Lett. 100 160501
[17] Vittorio G, Seth L and Lotenzo M 2008 Phys. Rev. A 78 052310
[18] Koustubh P, Avimita C and Swaroop G 2023 Sensors 23 7462
[19] Mitarai K, Kitagawa M and Fujii K 2019 Phys. Rev. A 99 012301
[20] Bernasconi A, Berti A, Corso G M and Poggiali A 2024 IEEE Access 12 116274
[21] Li H, Jiang N, Wang Z, Wang J and Zhou R 2021 Int. J. Theor. Phys. 60 2037
[22] Shao C P 2018 arXiv:1803.01601v2
[23] Nghiem N A and Wei T 2023 Quantum Inf. Process 22 299
[24] Qi W, Zenchuk A I, Kumar A and Wu J 2024 Commun. Theor. Phys. 76 035103
[25] Brassard G, Hoyer P, Mosca M and Tapp A 2000 arXiv:quantph/ 0005055v1
[26] Ruiz-Perez L and Garcia-Escartin J C 2017 Sensors 16 152
[27] Wang D, Liu Z, Zhu W and Li Z 2012 Comput. Sci. 39 302
[28] Prakash A 2014 Quantum Algorithms for Linear Algebra and Machine Learning
[29] Zenchuk A I, QiW, Kumar A andWu J 2024 Quantum Inf. Comput. 24 1099
[30] Gilyen A, Su Y, Low G H and Wiebe N 2019 arXiv:1806.01838
[1] Planar: A software for exact decoding quantum error correction codes with planar structure
Dongyang Feng(冯东阳), Hanyan Cao(曹涵彦), and Pan Zhang(张潘). Chin. Phys. B, 2025, 34(5): 050311.
[2] Distributed quantum circuit partitioning and optimization based on combined spectral clustering and search tree strategies
Zilu Chen(陈子禄), Zhijin Guan(管致锦), Shuxian Zhao(赵书娴), and Xueyun Cheng(程学云). Chin. Phys. B, 2025, 34(5): 050305.
[3] RF detection of split-gate modes in Si-MOS quantum dots
Ning Chu(楚凝), Sheng-Kai Zhu(祝圣凯), Ao-Ran Li(李傲然), Chu Wang(王储), Wei-Zhu Liao(廖伟筑), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2025, 34(4): 040303.
[4] All-microwave CZ gate based on fixed-frequency driven coupler
Wanpeng Gao(高万鹏), Xiaoliang He(何潇梁), Zhengqi Niu(牛铮琦), Daqiang Bao(包大强), Kuang Liu(刘匡), Junfeng Chen(陈俊锋), Zhen Wang(王镇), and Z. R. Lin(林志荣). Chin. Phys. B, 2025, 34(4): 040304.
[5] Robust quantum gate optimization with first-order derivatives of ion-phonon and ion-ion couplings in trapped ions
Jing-Bo Wang(汪景波). Chin. Phys. B, 2025, 34(4): 040302.
[6] Efficient fault-tolerant circuit for preparing quantum uniform superposition states via quantum measurement
Xiang-Qun Fu(付向群), Tian-Ci Tian(田天赐), Hong-Wei Li(李宏伟), Jian-Hong Shi(史建红), Xiao-Liang Yang(杨晓亮), Tan Li(李坦), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2025, 34(12): 120303.
[7] Exact quantum algorithm for unit commitment optimization based on partially connected quantum neural networks
Jian Liu(刘键), Xu Zhou(周旭), Zhuojun Zhou(周卓俊), and Le Luo(罗乐). Chin. Phys. B, 2025, 34(10): 100303.
[8] Delayed-measurement one-way quantum computing on cloud quantum computer
Zhi-Peng Yang(杨智鹏), Yu-Ran Zhang(张煜然), Fu-Li Li(李福利), and Heng Fan(范桁). Chin. Phys. B, 2024, 33(9): 090304.
[9] A family of quantum von Neumann architecture
Dong-Sheng Wang(王东升). Chin. Phys. B, 2024, 33(8): 080302.
[10] Development of 400-μW cryogen-free dilution refrigerators for quantum experiments
Xiang Guan(关翔), Jie Fan(樊洁), Yong-Bo Bian(边勇波), Zhi-Gang Cheng(程智刚), and Zhong-Qing Ji(姬忠庆). Chin. Phys. B, 2024, 33(7): 070701.
[11] Electric field dependence of spin qubit in a Si-MOS quantum dot
Rong-Long Ma(马荣龙), Ming Ni(倪铭), Yu-Chen Zhou(周雨晨), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Di Liu(刘頔), Gang Luo(罗刚), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(6): 060312.
[12] Design of a novel hybrid quantum deep neural network in INEQR images classification
Shuang Wang(王爽), Ke-Han Wang(王柯涵), Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), and Shuai Guo(郭帅). Chin. Phys. B, 2024, 33(6): 060310.
[13] Quantum algorithm for minimum dominating set problem with circuit design
Haoying Zhang(张皓颖), Shaoxuan Wang(王绍轩), Xinjian Liu(刘新建), Yingtong Shen(沈颖童), and Yukun Wang(王玉坤). Chin. Phys. B, 2024, 33(2): 020310.
[14] Simulation of optimal work extraction for quantum systems with work storage
Peng-Fei Song(宋鹏飞) and Dan-Bo Zhang(张旦波). Chin. Phys. B, 2024, 33(2): 020312.
[15] Automatic architecture design for distributed quantum computing
Ting-Yu Luo(骆挺宇), Yu-Zhen Zheng(郑宇真), Xiang Fu(付祥), and Yu-Xin Deng(邓玉欣). Chin. Phys. B, 2024, 33(12): 120302.
No Suggested Reading articles found!