Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 090308    DOI: 10.1088/1674-1056/ad5d93
GENERAL Prev   Next  

Generation of macroscopic entanglement in ensemble systems based on silicon vacancy centers

Jian-Zhuang Wu(武建壮), Ying Xi(奚滢), Bo-Ya Li(李博雅), Lian-E Lu(芦连娥), and Yong-Hong Ma(马永红)†
School of Science, Inner Mongolia University of Science and Technology, Baotou 014010, China
Abstract  Entanglement in macroscopic systems, as a fundamental quantum resource, has been utilized to propel the advancement of quantum technology and probe the boundary between the quantum and classical realms. This study focuses on a unique hybrid quantum system comprising of an ensemble of silicon vacancy (SiV) centers coupled to phononic waveguides in diamond via strain interactions. By employing two sets of time-dependent, non-overlapping driving fields, we investigate the generation process and dynamic properties of macroscopic quantum entanglement, providing fresh insights into the behavior of such hybrid quantum systems. Furthermore, it paves the way for new possibilities in utilizing quantum entanglement as an information carrier in quantum information processing and quantum communication.
Keywords:  quantum entanglement      silicon vacancy centers      diamond waveguide  
Received:  07 May 2024      Revised:  11 June 2024      Accepted manuscript online:  02 July 2024
PACS:  03.67.Bg (Entanglement production and manipulation)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12265022), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2021MS01012), and the Inner Mongolia Fundamental Research Funds for the Directly Affiliated Universities (Grant No. 2023RCTD014).
Corresponding Authors:  Yong-Hong Ma     E-mail:  myh_dlut@126.com

Cite this article: 

Jian-Zhuang Wu(武建壮), Ying Xi(奚滢), Bo-Ya Li(李博雅), Lian-E Lu(芦连娥), and Yong-Hong Ma(马永红) Generation of macroscopic entanglement in ensemble systems based on silicon vacancy centers 2024 Chin. Phys. B 33 090308

[1] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2002 Rev. Mod. Phys. 81 865
[2] Mancini S, Giovannetti V, Vitali D and Tombesi P 2002 Phys. Rev. Lett. 88 120401
[3] Dolde F, Jakobi I, Naydenov B, Zhao N, Pezzagna S, Trautmann C, Meijer J, Neumann P, Jelezko F and Wrachtrup J 2013 Nat. Phys. 9 139
[4] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513
[5] Leggett A J and Garg A 1985 Phys. Rev. Lett. 54 857
[6] Diósi L 1989 Phys. Rev. A 40 1165
[7] Penrose R 1996 Gen. Relat. Gravit. 28 581
[8] Amico L, Fazio R, Osterloh A and Vedral V 2008 Rev. Mod. Phys. 80 517
[9] Tong X, Wang C, Cao C, He L and Zhang R 2014 Opt. Commun. 310 166
[10] Yang Z B, Jin H, Jin J W, Liu J Y, Liu H Y and Yang R C 2021 Phys. Rev. Res. 3 023126
[11] Cao C, Wang T J, Zhang R and Wang C 2015 Laser Phys. Lett. 12 036001
[12] Ovartchaiyapong P, Lee K W, Myers B A and Jayich A C B 2014 Nat. Commun. 5 4429
[13] Liu R, Liao Q, Zhao Q and Zhang Z 2023 Eur. Phys. J. D 77 84
[14] Chotorlishvili L, Sander D, Sukhov A, Dugaev V, Vieira V R, Komnik A and Berakdar J 2013 Phys. Rev. B 88 085201
[15] Zhou Y, Li B, Li X X, Li F L and Li P B 2018 Phys. Rev. A 98 052346
[16] Muschik C A, Polzik E S and Cirac J I 2011 Phys. Rev. A 83 052312
[17] Julsgaard B, Kozhekin A and Polzik E S 2001 Nature 413 400
[18] Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I and Polzik E S 2011 Phys. Rev. Lett. 107 080503
[19] Feher G 1959 Phys. Rev. 114 1219
[20] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623
[21] Ma Y H, Ding Q Z and Yu T 2020 Phys. Rev. A 101022327
[22] Li L, Schröder T, Chen E H, Walsh M, Bayn I, Goldstein J, Gaathon O, Trusheim M E, Lu M, Mower J, Cotlet M, Markham M L, Twitchen D J and Englund D 2015 Nat. Commun. 6 6173
[23] Tchebotareva A, Hermans S L N, Humphreys P C, Voigt D, Harmsma P J, Cheng L K, Verlaan A L, Dijkhuizen N, De Jong W, Dréau A and Hanson R 2019 Phys. Rev. Lett. 123 063601
[24] Toklikishvili Z, Chotorlishvili L, Mishra S K, Stagraczynski S, Schüler M, Rau A R P and Berakdar J 2017 J. Phys. B: At. Mol. Opt. Phys. 50 055007
[25] Rittweger E, Wildanger D and Hell S W 2009 Europhys. Lett. 8614001
[26] Naydenov B, Reinhard F, Lämmle A, Richter V, Kalish R, D’Haenens-Johansson U F S, Newton M, Jelezko F and Wrachtrup J 2010 Appl. Phys. Lett. 97 242511
[27] Neumann P, Mizuochi N, Rempp F, Hemmer P, Watanabe H, Yamasaki S, Jacques V, Gaebel T, Jelezko F and Wrachtrup J 2008 Science 320 1326
[28] Pfaff W, Taminiau T H, Robledo L, Bernien H, Markham M, Twitchen D J and Hanson R 2013 Nat. Phys. 9 29
[29] Lemonde M A, Meesala S, Sipahigil A, Schuetz M J A, Lukin M D, Loncar M and Rabl P 2018 Phys. Rev. Lett. 120 213603
[30] Chen J Q, Qiao Y F, Dong X L, Hei X L and Li P B 2021 Phys. Rev. A 103 013709
[31] Ren Z Q, Lu X L and Xiang Z L 2024 Opt. Express 32 4013
[32] Ren Z Q, Feng C R and Xiang Z L 2022 Opt. Express 30 41685
[33] Hepp C, Müller T, Waselowski V, Becker J N, Pingault B, Sternschulte H, Steinmüller-Nethl D, Gali A, Maze J R, Atatüre M and Becher C 2014 Phys. Rev. Lett. 112 036405
[34] Meesala S, Sohn Y I, Pingault B, Shao L, Atikian H A, Holzgrafe J, Gündoǧan M, Stavrakas C, Sipahigil A, Chia C, Evans R, Burek M J, Zhang M, Wu L, Pacheco J L, Abraham J, Bielejec E, Lukin M D, Atatüre M and Lončar M 2018 Phys. Rev. B 97 205444
[35] Qiao Y F, Li H Z, Dong X L, Chen J Q, Zhou Y and Li P B 2020 Phys. Rev. A 101042313
[36] Fröhlich H 1950 Phys. Rev. 79 845
[37] Nakajima S 1955 Adv. Phys. 4 363
[38] Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491
[39] Jing Y M, Alsina Daniel and Razavi Mohsen 2020 Phys. Rev. Appl. 14 064037
[40] Sukachev D D, Sipahigil A, Nguyen C T, Bhaskar M K, Evans R E, Jelezko F and Lukin M D 2017 Phys. Rev. Lett. 119 223602
[41] Bravyi S, DiVincenzo D P and Loss D 2011 Ann. Phys. 326 2793
[42] Blais A, Gambetta J, Wallraff A, Schuster D I, Girvin S M, Devoret M H and Schoelkopf R J 2007 Phys. Rev. A 75 032329
[43] Raymer M G, Funk A C, Sanders B C and De Guise H 2003 Phys. Rev. A 67 052104
[44] Ma Y H, Ding Q Z and Wu E 2020 Phys. Rev. A 101 022311
[45] Vardi A and Anglin J R 2001 Phys. Rev. Lett. 86 568
[46] Breuer, Heinz-Peter and Francesco Petruccione 2010 The Theory of Open Quantum Systems (Oxford University Press)c[47] Weiss Ulrich 2012 Quantum Dissipative Systems (World Scientific)
[1] Delayed-measurement one-way quantum computing on cloud quantum computer
Zhi-Peng Yang(杨智鹏), Yu-Ran Zhang(张煜然), Fu-Li Li(李福利), and Heng Fan(范桁). Chin. Phys. B, 2024, 33(9): 090304.
[2] Entangling two levitated charged nanospheres through Coulomb interaction
Guoyao Li(李国耀) and Zhangqi Yin(尹璋琦). Chin. Phys. B, 2024, 33(7): 074205.
[3] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[4] Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system
Jin-Song Huang(黄劲松), Hong-Wu Huang(黄红武), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉). Chin. Phys. B, 2024, 33(5): 050506.
[5] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[6] Generation of microwave photon perfect W states of three coupled superconducting resonators
Xin-Ke Li(李新克), Yuan Zhou(周原), Guang-Hui Wang(王光辉), Dong-Yan Lv(吕东燕),Fazal Badshah, and Hai-Ming Huang(黄海铭). Chin. Phys. B, 2023, 32(4): 040306.
[7] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[8] Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model
Yue Li(李玥), Panpan Fang(房盼盼), Zhe Wang(王哲), Panpan Zhang(张盼盼), Yuliang Xu(徐玉良), and Xiangmu Kong(孔祥木). Chin. Phys. B, 2023, 32(10): 100303.
[9] State transfer and entanglement between two- and four-level atoms in a cavity
Si-Wu Li(李思吾), Tianfeng Feng(冯田峰), Xiao-Long Hu(胡骁龙), and Xiaoqi Zhou(周晓祺). Chin. Phys. B, 2023, 32(10): 104214.
[10] Broadband multi-channel quantum noise suppression and phase-sensitive modulation based on entangled beam
Ke Di(邸克), Shuai Tan(谈帅), Anyu Cheng(程安宇), Yu Liu(刘宇), and Jiajia Du(杜佳佳). Chin. Phys. B, 2023, 32(10): 100302.
[11] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[12] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[13] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[14] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[15] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
No Suggested Reading articles found!