Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(2): 020303    DOI: 10.1088/1674-1056/adeb5b
GENERAL Prev   Next  

Machine learning of chaotic characteristics in classical nonlinear dynamics using variational quantum circuit

Sheng-Chen Bai(白生辰) and Shi-Ju Ran(冉仕举)†
Center for Quantum Physics and Intelligent Sciences, Department of Physics, Capital Normal University, Beijing 100048, China
Abstract  Replicating the chaotic characteristics inherent in nonlinear dynamical systems via machine learning (ML) is a key challenge in this rapidly advancing interdisciplinary field. In this work, we explore the potential of variational quantum circuits (VQC) for learning the stochastic properties of classical nonlinear dynamical systems. Specifically, we focus on the one- and two-dimensional logistic maps, which, while simple, remain under-explored in the context of learning dynamical characteristics. Our findings reveal that, even for such simple dynamical systems, accurately replicating long-term characteristics is hindered by a pronounced sensitivity to overfitting. While increasing the parameter complexity of the ML model typically enhances short-term prediction accuracy, it also leads to a degradation in the model's ability to replicate long-term characteristics, primarily due to the detrimental effects of overfitting on generalization power. By comparing the VQC with two widely recognized classical ML techniques, which are long short-term memory (LSTM) networks for time-series processing and reservoir computing, we demonstrate that VQC outperforms these methods in terms of replicating long-term characteristics. Our results suggest that for the ML of dynamics, it is demanded to develop more compact and efficient models (such as VQC) rather than more complicated and large-scale ones.
Keywords:  variational quantum circuit      machine learning      chaos  
Received:  15 April 2025      Revised:  12 June 2025      Accepted manuscript online:  03 July 2025
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Sheng-Chen Bai is grateful to Qing Lv, Peng-Fei Zhou, Yong Qing, Zhang-Xu Chen, Guo-Dong Cheng, Ke Li, Rui Hong, Ying Lu, Yi-Cheng Tang, and Yu-Jia An for helpful discussions. Project supported in part by Beijing Natural Science Foundation (Grant No. 1232025), Peng Huanwu Visiting Professor Program, and Academy for Multidisciplinary Studies, Capital Normal University.
Corresponding Authors:  Shi-Ju Ran     E-mail:  sjran@cnu.edu.cn

Cite this article: 

Sheng-Chen Bai(白生辰) and Shi-Ju Ran(冉仕举) Machine learning of chaotic characteristics in classical nonlinear dynamics using variational quantum circuit 2026 Chin. Phys. B 35 020303

[1] Kantz H and Schreiber T 2004 Nonlinear time series analysis, Vol. 7 (Cambridge University Press)
[2] Strogatz S H 2018 Nonlinear dynamics and chaos with student solutions manual: With applications to physics, biology, chemistry, and engineering (CRC Press)
[3] May R M 1976 Nature 261 459
[4] Lorenz E N 1963 Journal of Atmospheric Sciences 20 130
[5] Hochreiter S and Schmidhuber J 1997 Neural Computation 9 1735
[6] Yu Y, Si X, Hu C and Zhang J 2019 Neural Computation 31 1235
[7] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser L U and Polosukhin I 2017 Advances in Neural Information Processing Systems, Vol. 30, eds. Guyon I, Luxburg U V, Bengio S, Wallach H, Fergus R, Vishwanathan S and Garnett R (Curran Associates, Inc.)
[8] Bi K, Xie L, Zhang H, Chen X, Gu X and Tian Q 2023 Nature 619 533
[9] Chen L, Zhong X, Zhang F, Cheng Y, Xu Y, Qi Y and Li H 2023 npj Climate and Atmospheric Science 6 190
[10] Pathak J, Hunt B, Girvan M, Lu Z and Ott E 2018 Phys. Rev. Lett. 120 024102
[11] Herzog S, Wörgötter F and Parlitz U 2019 Chaos 29 123116
[12] Borra F, Vulpiani A and Cencini M 2020 Phys. Rev. E 102 052203
[13] Pathak J, Lu Z, Hunt B R, Girvan M and Ott E 2017 Chaos 27 121102
[14] Lu Z, Hunt B R and Ott E 2018 Chaos 28 061104
[15] Antonik P, Gulina M, Pauwels J and Massar S 2018 Phys. Rev. E 98 012215
[16] Fan H, Jiang J, Zhang C, Wang X and Lai Y C 2020 Phys. Rev. Res. 2 012080
[17] Sun Y, Zhang L and Yao M 2023 Chaos, Solitons & Fractals 175 113971
[18] Jaeger H 2001 Bonn, Germany: German national research center for information technology gmd technical report 148 13
[19] MaassW, Natschläger T and Markram H 2002 Neural Computation 14 2531
[20] Lukoševičius M 2012 A Practical Guide to Applying Echo State Networks (Berlin, Heidelberg: Springer Berlin Heidelberg) pp. 659–686
[21] Jaeger H and Haas H 2004 Science 304 78
[22] Lukoševičius M and Jaeger H 2009 Computer Science Review 3 127
[23] 2019 Neural Networks 115 100
[24] Klos C, Kalle Kossio Y F, Goedeke S, Gilra A and Memmesheimer R M 2020 Phys. Rev. Lett. 125 088103
[25] Kim J Z, Lu Z, Nozari E, Pappas G J and Bassett D S 2021 Nature Machine Intelligence 3 316
[26] Kong L W, Fan H W, Grebogi C and Lai Y C 2021 Phys. Rev. Res. 3 013090
[27] Peruzzo A, McClean J, Shadbolt P, Yung M H, Zhou X Q, Love P J, Aspuru-Guzik A and O’Brien J L 2014 Nat. Commun. 5 4213
[28] Cerezo M, Arrasmith A, Babbush R, Benjamin S C, Endo S, Fujii K, McClean J R, Mitarai K, Yuan X, Cincio L and Coles P J 2021 Nat. Rev. Phys. 3 625
[29] Zhou P F, Hong R and Ran S J 2021 Phys. Rev. A 104 042601
[30] Yuan J M, Tung M, Feng D H and Narducci L M 1983 Phys. Rev. A 28 1662
[31] Ferretti A and Rahman N 1988 Chem. Phys. 119 275
[32] Cirac J I and Verstraete F 2009 J. Phys. A: Math. Theor. 42 504004
[33] Orus R The European Physical Journal B 280
[34] Orus R 2019 Nat. Rev. Phys. 1 538
[35] Ran S J, Tirrito E, Peng C, Chen X, Tagliacozzo L, Su G and LewensteinM2020 Tensor Network Contractions: Methods and Applications to Quantum Many-Body Systems (Springer, Cham)
[36] Cirac J I, Pérez-García D, Schuch N and Verstraete F 2021 Rev. Mod. Phys. 93 045003
[37] Cirac J I, Poilblanc D, Schuch N and Verstraete F 2011 Phys. Rev. B 83 245134
[38] Ge Y and Eisert J 2016 New J. Phys. 18 083026
[39] Verstraete F and Cirac J I 2006 Phys. Rev. B 73 094423
[40] Stoudenmire E and Schwab D J 2016 Advances in Neural Information Processing Systems 29, eds. Lee D D, Sugiyama M, Luxburg U V, Guyon I and Garnett R (Curran Associates, Inc.) pp. 4799–4807
[41] Han Z Y, Wang J, Fan H, Wang L and Zhang P 2018 Phys. Rev. X 8 031012
[42] Liu D, Ran S J, Wittek P, Peng C, García R B, Su G and Lewenstein M 2019 New J. Phys. 21 073059
[43] Sun Z Z, Peng C, Liu D, Ran S J and Su G 2020 Phys. Rev. B 101 075135
[44] Qing Y, Li K, Zhou P F and Ran S J 2025 Intelligent Computing 4 0123
[45] Jia Z A, Yi B, Zhai R, Wu Y C, Guo G C and Guo G P 2019 Advanced Quantum Technologies 2 1800077
[46] Zhao R and Wang S 2021 Preprint 2109.01840
[47] Pérez-García D, Verstraete F, Wolf M M and Cirac J I 2007 Quantum Inf. Comput. 7 401
[48] Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N and Lloyd S 2017 Nature 549 195
[49] Cerezo M, Verdon G, Huang H Y, Cincio L and Coles P J 2022 Nature Computational Science 2 567
[50] Ran S J and Su G 2023 Intelligent Computing 2 0061
[51] Goeßmann A, Götte M, Roth I, Sweke R, Kutyniok G and Eisert J 2020 NeurIPS2020-Tensorworkshop, December
[52] Wang Y, Tang S and DengM2022 International Journal of Robust and Nonlinear Control 32 7304
[53] Loshchilov I and Hutter F 2019 Preprint 1711.05101
[54] See the supplemental material for further details, including information on dataset and pre-processing, automatically differentiable quantum circuit for time series prediction, Lyapunov exponent analysis, peak signal-to-noise ratios, additional results, and model hyperparameters. Refs.
[29,55–57,65–68] are included.
[55] Kotevski Z and Mitrevski P 2010 ICT Innovations 2009 Ed. Davcev D and Gómez J M (Berlin, Heidelberg: Springer Berlin Heidelberg) pp. 357–366
[56] Parker T S and Chua L 2012 Practical numerical algorithms for chaotic systems (Springer Science & Business Media)
[57] Moon F C 2008 Chaotic and fractal dynamics: introduction for applied scientists and engineers (John Wiley & Sons)
[58] Bezruchko B and Smirnov D 2010 Extracting Knowledge From Time Series: An Introduction to Nonlinear Empirical Modeling (Berlin Heidelberg: Springer )
[59] Andrecut M 1998 Int. J. Mod. Phys. B 12 921
[60] Kong L W, Weng Y, Glaz B, Haile M and Lai Y C 2023 Chaos 33 033111
[61] Cheng S, Wang L, Xiang T and Zhang P 2019 Phys. Rev. B 99 155131
[62] Gao Z F, Cheng S, He R Q, Xie Z Y, Zhao H H, Lu Z Y and Xiang T 2020 Phys. Rev. Res. 2 023300
[63] Motter A E and Campbell D K 2013 Physics Today 66 27
[64] Adesso G, Bromley T R and Cianciaruso M 2016 J. Phys. A: Math. Theor. 49 473001
[65] Gill S S, Kumar A, Singh H, Singh M, Kaur K, Usman M and Buyya R 2022 Software: Practice and Experience 52 66
[66] Geist K, Parlitz U and Lauterborn W 1990 Prog. Theor. Phys. 83 875
[67] McDonald E J and Higham D J 2001 ETNA–Electronic Transactions on Numerical Analysis 12 234
[68] Beck M, Pöppel K, Spanring M, Auer A, Prudnikova O, Kopp M, Klambauer G, Brandstetter J and Hochreiter S 2024 Preprint 2405.04517
[1] Machine learning-assisted optimization of MTO basis sets
Zhiqiang Li(李志强) and Lei Wang(王蕾). Chin. Phys. B, 2026, 35(1): 016301.
[2] Review of machine learning tight-binding models: Route to accurate and scalable electronic simulations
Jijie Zou(邹暨捷), Zhanghao Zhouyin(周寅张皓), Shishir Kumar Pandey, and Qiangqiang Gu(顾强强). Chin. Phys. B, 2026, 35(1): 017101.
[3] EDIS: A simulation software for dynamic ion intercalation/deintercalation processes in electrode materials
Liqi Wang(王力奇), Ruijuan Xiao(肖睿娟), and Hong Li(李泓). Chin. Phys. B, 2026, 35(1): 018201.
[4] Revealing the dynamic responses of Pb under shock loading based on DFT-accuracy machine learning potential
Enze Hou(侯恩则), Xiaoyang Wang(王啸洋), and Han Wang(王涵). Chin. Phys. B, 2026, 35(1): 018701.
[5] Machine learning approach to reconstruct dephasing time from solid HHG spectra
Jiahao Liu(刘佳豪), Xi Zhao(赵曦), Jun Wang(王俊), and Songbin Zhang(张松斌). Chin. Phys. B, 2025, 34(9): 097804.
[6] Hyperparameter optimization and force error correction of neuroevolution potential for predicting thermal conductivity of wurtzite GaN
Zhuo Chen(陈卓), Yuejin Yuan(袁越锦), Wenyang Ding(丁文扬), Shouhang Li(李寿航), Meng An(安盟), and Gang Zhang(张刚). Chin. Phys. B, 2025, 34(8): 086110.
[7] Chaos of cavity optomechanical system with Coulomb coupling
Yingjia Yang(杨应佳), Liwei Liu(刘利伟), Lianchun Yu(俞连春), Weizheng Kong(孔伟正), Haiyan Jiao(焦海燕), Xiaoyan Deng(邓小燕), and Xiaoyong Li(李小勇). Chin. Phys. B, 2025, 34(8): 080503.
[8] Complexity dynamics analysis of a dual-channel green supply chain with government intervention and cap-and-trade regulation
Yuhao Zhang(张玉豪), Lin Huang(黄林), and Man Yang(杨满). Chin. Phys. B, 2025, 34(7): 070501.
[9] Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection
Fei Yu(余飞), Dan Su(苏丹), Shaoqi He(何邵祁), Yiya Wu(吴亦雅), Shankou Zhang(张善扣), and Huige Yin(尹挥戈). Chin. Phys. B, 2025, 34(5): 050502.
[10] Model-free prediction of chaotic dynamics with parameter-aware reservoir computing
Jianmin Guo(郭建敏), Yao Du(杜瑶), Haibo Luo(罗海波), Xuan Wang(王晅), Yizhen Yu(于一真), and Xingang Wang(王新刚). Chin. Phys. B, 2025, 34(4): 040505.
[11] Study and circuit design of stochastic resonance system based on memristor chaos induction
Qi Liang(梁琦), Wen-Xin Yu(于文新), and Qiu-Mei Xiao(肖求美). Chin. Phys. B, 2025, 34(4): 040502.
[12] Hybrid image encryption scheme based on hyperchaotic map with spherical attractors
Zhitang Han(韩智堂), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2025, 34(3): 030503.
[13] Impact of the chaotic semiconductor laser output power on time-delay-signature of chaos and random bit generation
Chenpeng Xue(薛琛鹏), Xu Wang(王绪), Likai Zheng(郑利凯), Haoyu Zhang(张昊宇), Yanhua Hong, and Zuxing Zhang(张祖兴). Chin. Phys. B, 2025, 34(3): 030504.
[14] Significant increase in thermal conductivity of cathode material LiFePO4 by Na substitution: A machine learning interatomic potential-assisted investigation
Shi-Yi Li(李诗怡), Qian Liu(刘骞), Yu-Jia Zeng(曾育佳), Guofeng Xie(谢国锋), and Wu-Xing Zhou(周五星). Chin. Phys. B, 2025, 34(2): 028201.
[15] A new 2D Hindmarsh-Rose neuron, its circuit implementation, and its application in dynamic flexible job shops problem
Yao Lu(卢尧), Weijie Nie(聂伟杰), Xu Wang(王旭), Xianming Wu(吴先明), and Qingyao Ma(马晴瑶). Chin. Phys. B, 2025, 34(12): 120503.
No Suggested Reading articles found!