|
|
|
Type-II Dirac nodal chain semimetal CrB4 |
| Xiao-Yao Hou(侯逍遥)1,2,3, Ze-Feng Gao(高泽峰)1,2, Peng-Jie Guo(郭朋杰)1,2,†, Jian-Feng Zhang(张建丰)4,‡, and Zhong-Yi Lu(卢仲毅)1,2,5,§ |
1 School of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices. Renmin University of China, Beijing 100872, China; 2 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China; 3 School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China; 4 Center for High Pressure Science & Technology Advanced Research, Beijing 100094, China; 5 Hefei National Laboratory, Hefei 230088, China |
|
|
|
|
Abstract Dirac nodal line semimetals with topologically protected drumhead surface states have attracted intense theoretical and experimental attention over a decade. However, the study of type-II Dirac nodal line semimetals is rare, especially the type-II nodal chain semimetals have not been confirmed by experiment due to the lack of ideal material platform. In this study, based on symmetry analysis and the first-principles electronic structure calculations, we predict that CrB4 is an ideal type-II Dirac nodal chain semimetal protected by the mirror symmetry. Moreover, there are two nodal rings protected by both space-inversion and time-reversal symmetries in CrB4. More importantly, in CrB4 the topologically protected drumhead surface states span the entire Brillouin zone at the Fermi level. Considering the fact that CrB4 has been synthesized experimentally and the spin-orbit coupling is very weak, CrB4 provides an ideal material platform for studying the exotic properties of type-II Dirac nodal chain semimetals in experiment.
|
Received: 23 September 2025
Revised: 17 October 2025
Accepted manuscript online: 24 October 2025
|
|
PACS:
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
| |
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
| |
71.90.+q
|
(Other topics in electronic structure)
|
| |
75.70.Tj
|
(Spin-orbit effects)
|
|
| Fund: This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11934020, 12204533, 62476278, and 62206299), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 24XNKJ15), and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302402). |
Corresponding Authors:
Peng-Jie Guo, Jian-Feng Zhang, Zhong-Yi Lu
E-mail: guopengjie@ruc.edu.cn;jianfeng.zhang@hpstar.ac.cn;zlu@ruc.edu.cn
|
Cite this article:
Xiao-Yao Hou(侯逍遥), Ze-Feng Gao(高泽峰), Peng-Jie Guo(郭朋杰), Jian-Feng Zhang(张建丰), and Zhong-Yi Lu(卢仲毅) Type-II Dirac nodal chain semimetal CrB4 2026 Chin. Phys. B 35 017301
|
[1] Weng H, Dai X and Fang Z 2016 J. Phys. Condens. Matter 28 303001 [2] Bernevig A, Weng H, Fang Z and Dai X 2018 J. Phys. Soc. Jpn. 87 041001 [3] Zou J, He Z and Xu G 2019 npj Comput. Mater. 5 96 [4] Lv B Q, Qian T and Ding H 2021 Rev. Mod. Phys. 93 025002 [5] Li G and Felser C 2020 Appl. Phys. Lett. 116 070501 [6] Xie R, Zhang T, Weng H and Chai G L 2022 Small. Sci. 2 2100106 [7] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101 [8] Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029 [9] Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405 [10] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320 [11] Wang Z, Weng H, Wu Q, Dai X and Fang Z 2013 Phys. Rev. B 88 125427 [12] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864 [13] Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J and Bernevig B A 2016 Science 353 aaf5037 [14] Weng H, Fang C, Fang Z and Dai X 2016 Phys. Rev. B 93 241202 [15] Zhu Z, Winkler G W, Wu Q, Li J and Soluyanov A A 2016 Phys. Rev. X 6 031003 [16] Guo P J, Yang H C, Liu K and Lu Z Y 2018 Phys. Rev. B 98 045134 [17] Kumar N, Yao M, Nayak J, et al. 2020 Adv. Mater. 32 1906046 [18] Yang X, Cochran T A, Chapai R, et al. 2020 Phys. Rev. B 101 201105 [19] Wieder B J, Kim Y, Rappe A M and Kane C L 2016 Phys. Rev. Lett. 116 186402 [20] Guo P J, Wei Y W, Liu K, Liu Z X and Lu Z Y 2021 Phys. Rev. Lett. 127 176401 [21] Burkov A A, Hook M D and Balents L 2011 Phys. Rev. B 84 235126 [22] Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X and Kawazoe Y 2015 Phys. Rev. B 92 045108 [23] Yu R, Weng H, Fang Z, Dai X and Hu X 2015 Phys. Rev. Lett. 115 036807 [24] Yuan D, Yue C, Hu Y and Zhang W 2024 Chin. Phys. Lett. 41 037304 [25] Wang Q, Zhang J, Huang J, Shi J, Zhang S, Guo H, Huang L, Ding H, Zhou W and Zhang Y F 2023 Chin. Phys. B 32 016102 [26] Guo D L and Li H 2025 Chin. Phys. B 34 067102 [27] Wu W, Liu Y, Li S, Zhong C, Yu Z M, Sheng X L, Zhao Y X and Yang S A 2018 Phys. Rev. B 97 115125 [28] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495 [29] Huang H, Zhou S and Duan W 2016 Phys. Rev. B 94 121117 [30] Guo P J, Yang H C, Liu K and Lu Z Y 2017 Phys. Rev. B 95 155112 [31] Bzdusek T, Wu Q, Ruegg A, Sigrist M and Soluyanov A A 2016 Nature 538 75 [32] Ezawa M 2017 Phys. Rev. B 96 041202 [33] Liu Z, Lou R, Guo P, Wang Q, Sun S, Li C, Thirupathaiah S, Fedorov A, Shen D, Liu K, Lei H and Wang S 2018 Phys. Rev. X 8 031044 [34] Lou R, Guo P, Li M, Wang Q, Liu Z, Sun S, Li C, Wu X, Wang Z, Sun Z, Shen D, Huang Y, Liu K, Lu Z Y, Lei H, Ding H and Wang S 2018 npj Quantum Mater. 3 43 [35] Yan Q, Liu R, Yan Z, Liu B, Chen H, Wang Z and Lu L 2018 Nat. Phys. 14 461 [36] Zhao M, Zhuang Z Y, Wu F, Leng P, Joseph N B, Xie X, Ozerov M, He S, Chen Y, Narayan A, Liu Z and Xiu F 2024 ACS Nano 18 16684 [37] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [38] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [39] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [40] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [41] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 [42] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [44] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419 [45] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309 [46] Pizzi G, Vitale V, Arita R, et al. 2020 J. Phys.: Condens. Matter 32 165902 [47] Wu Q, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405 [48] Knappschneider A, Litterscheid C, Dzivenko D, Kurzman J A, Seshadri R, Wagner N, Beck J, Riedel R and Albert B 2013 Inorg. Chem. 52 540 [49] Niu H, Wang J, Chen X Q, Li D, Li Y, Lazar P, Podloucky R and Kolmogorov A N 2012 Phys. Rev. B 85 144116 [50] Guo P J, Yang H C, Zhang B J, Liu K and Lu Z Y 2016 Phys. Rev. B 93 235142 [51] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205 [52] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803 [53] Takane D, Wang Z, Souma S, Nakayama K, Trang C X, Sato T, Takahashi T and Ando Y 2016 Phys. Rev. B 94 121108 [54] Xu Q, Yu R, Fang Z, Dai X and Weng H 2017 Phys. Rev. B 95 045136 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|