Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 017301    DOI: 10.1088/1674-1056/ae172b
RAPID COMMUNICATION Prev   Next  

Type-II Dirac nodal chain semimetal CrB4

Xiao-Yao Hou(侯逍遥)1,2,3, Ze-Feng Gao(高泽峰)1,2, Peng-Jie Guo(郭朋杰)1,2,†, Jian-Feng Zhang(张建丰)4,‡, and Zhong-Yi Lu(卢仲毅)1,2,5,§
1 School of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices. Renmin University of China, Beijing 100872, China;
2 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China;
3 School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China;
4 Center for High Pressure Science & Technology Advanced Research, Beijing 100094, China;
5 Hefei National Laboratory, Hefei 230088, China
Abstract  Dirac nodal line semimetals with topologically protected drumhead surface states have attracted intense theoretical and experimental attention over a decade. However, the study of type-II Dirac nodal line semimetals is rare, especially the type-II nodal chain semimetals have not been confirmed by experiment due to the lack of ideal material platform. In this study, based on symmetry analysis and the first-principles electronic structure calculations, we predict that CrB4 is an ideal type-II Dirac nodal chain semimetal protected by the mirror symmetry. Moreover, there are two nodal rings protected by both space-inversion and time-reversal symmetries in CrB4. More importantly, in CrB4 the topologically protected drumhead surface states span the entire Brillouin zone at the Fermi level. Considering the fact that CrB4 has been synthesized experimentally and the spin-orbit coupling is very weak, CrB4 provides an ideal material platform for studying the exotic properties of type-II Dirac nodal chain semimetals in experiment.
Keywords:  type-II nodal chain semimetal      nontrivial surface states      weak spin-orbit coupling  
Received:  23 September 2025      Revised:  17 October 2025      Accepted manuscript online:  24 October 2025
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.90.+q (Other topics in electronic structure)  
  75.70.Tj (Spin-orbit effects)  
Fund: This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11934020, 12204533, 62476278, and 62206299), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 24XNKJ15), and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302402).
Corresponding Authors:  Peng-Jie Guo, Jian-Feng Zhang, Zhong-Yi Lu     E-mail:  guopengjie@ruc.edu.cn;jianfeng.zhang@hpstar.ac.cn;zlu@ruc.edu.cn

Cite this article: 

Xiao-Yao Hou(侯逍遥), Ze-Feng Gao(高泽峰), Peng-Jie Guo(郭朋杰), Jian-Feng Zhang(张建丰), and Zhong-Yi Lu(卢仲毅) Type-II Dirac nodal chain semimetal CrB4 2026 Chin. Phys. B 35 017301

[1] Weng H, Dai X and Fang Z 2016 J. Phys. Condens. Matter 28 303001
[2] Bernevig A, Weng H, Fang Z and Dai X 2018 J. Phys. Soc. Jpn. 87 041001
[3] Zou J, He Z and Xu G 2019 npj Comput. Mater. 5 96
[4] Lv B Q, Qian T and Ding H 2021 Rev. Mod. Phys. 93 025002
[5] Li G and Felser C 2020 Appl. Phys. Lett. 116 070501
[6] Xie R, Zhang T, Weng H and Chai G L 2022 Small. Sci. 2 2100106
[7] Wan X, Turner A M, Vishwanath A and Savrasov S Y 2011 Phys. Rev. B 83 205101
[8] Weng H, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
[9] Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[10] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[11] Wang Z, Weng H, Wu Q, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
[12] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864
[13] Bradlyn B, Cano J, Wang Z, Vergniory M G, Felser C, Cava R J and Bernevig B A 2016 Science 353 aaf5037
[14] Weng H, Fang C, Fang Z and Dai X 2016 Phys. Rev. B 93 241202
[15] Zhu Z, Winkler G W, Wu Q, Li J and Soluyanov A A 2016 Phys. Rev. X 6 031003
[16] Guo P J, Yang H C, Liu K and Lu Z Y 2018 Phys. Rev. B 98 045134
[17] Kumar N, Yao M, Nayak J, et al. 2020 Adv. Mater. 32 1906046
[18] Yang X, Cochran T A, Chapai R, et al. 2020 Phys. Rev. B 101 201105
[19] Wieder B J, Kim Y, Rappe A M and Kane C L 2016 Phys. Rev. Lett. 116 186402
[20] Guo P J, Wei Y W, Liu K, Liu Z X and Lu Z Y 2021 Phys. Rev. Lett. 127 176401
[21] Burkov A A, Hook M D and Balents L 2011 Phys. Rev. B 84 235126
[22] Weng H, Liang Y, Xu Q, Yu R, Fang Z, Dai X and Kawazoe Y 2015 Phys. Rev. B 92 045108
[23] Yu R, Weng H, Fang Z, Dai X and Hu X 2015 Phys. Rev. Lett. 115 036807
[24] Yuan D, Yue C, Hu Y and Zhang W 2024 Chin. Phys. Lett. 41 037304
[25] Wang Q, Zhang J, Huang J, Shi J, Zhang S, Guo H, Huang L, Ding H, Zhou W and Zhang Y F 2023 Chin. Phys. B 32 016102
[26] Guo D L and Li H 2025 Chin. Phys. B 34 067102
[27] Wu W, Liu Y, Li S, Zhong C, Yu Z M, Sheng X L, Zhao Y X and Yang S A 2018 Phys. Rev. B 97 115125
[28] Soluyanov A A, Gresch D, Wang Z, Wu Q, Troyer M, Dai X and Bernevig B A 2015 Nature 527 495
[29] Huang H, Zhou S and Duan W 2016 Phys. Rev. B 94 121117
[30] Guo P J, Yang H C, Liu K and Lu Z Y 2017 Phys. Rev. B 95 155112
[31] Bzdusek T, Wu Q, Ruegg A, Sigrist M and Soluyanov A A 2016 Nature 538 75
[32] Ezawa M 2017 Phys. Rev. B 96 041202
[33] Liu Z, Lou R, Guo P, Wang Q, Sun S, Li C, Thirupathaiah S, Fedorov A, Shen D, Liu K, Lei H and Wang S 2018 Phys. Rev. X 8 031044
[34] Lou R, Guo P, Li M, Wang Q, Liu Z, Sun S, Li C, Wu X, Wang Z, Sun Z, Shen D, Huang Y, Liu K, Lu Z Y, Lei H, Ding H and Wang S 2018 npj Quantum Mater. 3 43
[35] Yan Q, Liu R, Yan Z, Liu B, Chen H, Wang Z and Lu L 2018 Nat. Phys. 14 461
[36] Zhao M, Zhuang Z Y, Wu F, Leng P, Joseph N B, Xie X, Ozerov M, He S, Chen Y, Narayan A, Liu Z and Xiu F 2024 ACS Nano 18 16684
[37] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[38] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[39] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[40] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[41] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[42] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[43] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[44] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[45] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Comput. Phys. Commun. 185 2309
[46] Pizzi G, Vitale V, Arita R, et al. 2020 J. Phys.: Condens. Matter 32 165902
[47] Wu Q, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[48] Knappschneider A, Litterscheid C, Dzivenko D, Kurzman J A, Seshadri R, Wagner N, Beck J, Riedel R and Albert B 2013 Inorg. Chem. 52 540
[49] Niu H, Wang J, Chen X Q, Li D, Li Y, Lazar P, Podloucky R and Kolmogorov A N 2012 Phys. Rev. B 85 144116
[50] Guo P J, Yang H C, Zhang B J, Liu K and Lu Z Y 2016 Phys. Rev. B 93 235142
[51] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205
[52] Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
[53] Takane D, Wang Z, Souma S, Nakayama K, Trang C X, Sato T, Takahashi T and Ando Y 2016 Phys. Rev. B 94 121108
[54] Xu Q, Yu R, Fang Z, Dai X and Weng H 2017 Phys. Rev. B 95 045136
[1] Unchanged top surface-state structures in three-dimensional topological insulator Sb2Te3 thin films in the presence of bottom-surface moiré potentials
Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平). Chin. Phys. B, 2025, 34(12): 126801.
[2] Second-order topological insulator in twisted bilayer graphene with small twist angles
Fenghua Qi(戚凤华), Jie Cao(曹杰), Xingfei Zhou(周兴飞), and Guojun Jin(金国钧). Chin. Phys. B, 2025, 34(11): 116801.
[3] Intrinsic higher-order topological states in two-dimensional honeycomb quantum spin Hall insulators
Sibin Lü(吕思彬) and Jun Hu(胡军). Chin. Phys. B, 2025, 34(11): 117303.
[4] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[5] Random flux manipulating topological phase transitions in Chern insulators
Jinkun Wang(王锦坤) and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2025, 34(6): 067301.
[6] Possible coexistence of superconductivity and topological electronic states in 1T-RhSeTe
Tengdong Zhang(张腾东), Rui Fan(樊睿), Yan Gao(高炎), Yanling Wu(吴艳玲), Xiaodan Xu(徐晓丹), Dao-Xin Yao(姚道新), and Jun Li(李军). Chin. Phys. B, 2025, 34(2): 027403.
[7] Highly responsive photodetectors based on NiPS3/WS2 van der Waals type-II heterostructures
Zhiteng Li(李志腾), Yian Wang(王易安), Zhenming Qiu(邱振铭), Lin Wang(王琳), Xiaofeng Liu(刘小峰), Zhengwei Chen(陈政委), and Xiao Zhang(张晓). Chin. Phys. B, 2025, 34(2): 027201.
[8] Phase changings in the surface layers of Td-WTe2 driven by alkali-metal deposition
Yu Zhu(朱玉), Zheng-Guo Wang(王政国), Yu-Jing Ren(任宇靖), Peng-Hao Yuan(袁鹏浩), Jing-Zhi Chen(陈景芝), Yi Ou(欧仪), Li-Li Meng(孟丽丽), and Yan Zhang(张焱). Chin. Phys. B, 2025, 34(1): 017302.
[9] Higher-order topological corner states and origin in monolayer LaBrO
Qing Wang(王庆) and Ning Hao(郝宁). Chin. Phys. B, 2024, 33(12): 127303.
[10] Edge modes in finite-size systems with different edge terminals
Huiping Wang(王会平), Li Ren(任莉), Xiuli Zhang(张修丽), and Liguo Qin(秦立国). Chin. Phys. B, 2024, 33(10): 107302.
[11] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌). Chin. Phys. B, 2024, 33(8): 087102.
[12] Topological superconductors with spin-triplet pairings and Majorana Fermi arcs
Shi Huang(黄石) and Xi Luo(罗熙). Chin. Phys. B, 2024, 33(8): 087301.
[13] Discovery of controllable high Chern number quantum anomalous Hall state in tetragonal lattice FeSIn
Xiao-Lang Ren(任小浪) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(6): 067102.
[14] Fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters utilizing zero-line modes in a three-terminal device
Xiao-Long Lü(吕小龙), Jia-En Yang(杨加恩), and Hang Xie(谢航). Chin. Phys. B, 2024, 33(6): 068502.
[15] Reanalysis of energy band structure in the type-II quantum wells
Xinxin Li(李欣欣), Zhen Deng(邓震), Yang Jiang(江洋), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2024, 33(6): 067302.
No Suggested Reading articles found!