| CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Second-order topological insulator in twisted bilayer graphene with small twist angle |
| Fenghua Qi(戚凤华)1, Jie Cao(曹杰)2,†, Xingfei Zhou(周兴飞)3,‡, and Guojun Jin(金国钧)4,5,§ |
1 School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171, China; 2 College of Mechanics and Engineering Science, Hohai University, Nanjing 210098, China; 3 New Energy Technology Engineering Laboratory of Jiangsu Province School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 4 School of Physics Science and Technology, Kunming University, Kunming 650214, China; 5 National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Chin |
|
|
|
|
Abstract In recent years, the study of higher-order topological states and their material realizations has become a research frontier in topological condensed matter physics. We demonstrate that twisted bilayer graphene with small twist angles behaves as a second-order topological insulator possessing topological corner charges. Using a tight-binding model, we compute the topological band indices and corner states of finite-sized twisted bilayer graphene flakes. It is found that for any small twist angle, whether commensurate or incommensurate, the gaps both below and above the flat bands are associated with nontrivial topological indices. Our results not only extend the concept of second-order band topology to arbitrary small twist angles but also confirm the existence of corner states at acute-angle corners.
|
Received: 24 May 2025
Revised: 24 June 2025
Accepted manuscript online: 10 July 2025
|
|
PACS:
|
68.65.Cd
|
(Superlattices)
|
| |
73.20.At
|
(Surface states, band structure, electron density of states)
|
| |
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12104232 and 12074156). |
Corresponding Authors:
Jie Cao, Xingfei Zhou, Guojun Jin
E-mail: caojie@hhu.edu.cn;zxf@njupt.edu.cn;gjin@nju.edu.cn
|
| About author: 2025-116801-250926.pdf |
Cite this article:
Fenghua Qi(戚凤华), Jie Cao(曹杰), Xingfei Zhou(周兴飞), and Guojun Jin(金国钧) Second-order topological insulator in twisted bilayer graphene with small twist angle 2025 Chin. Phys. B 34 116801
|
[1] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 [2] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez- Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 [3] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R 2019 Science 363 1059 [4] Lu X, Stepanov P, YangW, Xie M, AamirMA, Das I, Urgell C,Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H and Efetov D K 2019 Nature 574 653 [5] Lopes dos Santos JMB, Peres NMR and Castro Neto A H 2007 Phys. Rev. Lett. 99 256802 [6] Hass J, Varchon F, Millán Otoya J E, Sprinkle M, Sharma N, de Heer W A, Berger C, First P N, Magaud L and Conrad E H 2008 Phys. Rev. Lett. 100 125504 [7] Li G, Luican A, Lopes dos Santos J M B, Castro Neto A H, Reina A, Kong J and Andrei E Y 2010 Nat. Phys. 6 109 [8] Miller D L, Kubista K D, Rutter G M, Ruan M, de Heer W A, First P N and Stroscio J A 2010 Phys. Rev. B 81 125427 [9] Luican A, Li G, Reina A, Kong J, Nair R R, Novoselov K S, Geim A K and Andrei E Y 2011 Phys. Rev. Lett. 106 126802 [10] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233 [11] Lopes dos Santos JMB, Peres NMR and Castro Neto A H 2012 Phys. Rev. B 86 155449 [12] Moon P and Koshino M 2012 Phys. Rev. B 85 195458 [13] Trambly de Laissardi‘ere G, Mayou D and Magaud L 2012 Phys. Rev. B 86 125413 [14] Moon P and Koshino M 2013 Phys. Rev. B 87 205404 [15] Koshino M 2015 New J. Phys. 17 015014 [16] Koshino M and Moon P 2015 J. Phys. Soc. Jpn. 84 121001 [17] Xu Y and Jin G 2015 Europhys. Lett. 111 67006 [18] Xu C and Balents L 2018 Phys. Rev. Lett. 121 087001 [19] Rademaker L and Mellado P 2018 Phys. Rev. B 98 235158 [20] Dodaro J F, Kivelson S A, Schattner Y, Sun X Q and Wang C 2018 Phys. Rev. B 98 075154 [21] Wu F, Lovorn T, Tutuc E and MacDonald A H 2018 Phys. Rev. Lett. 121 026402 [22] Po H C, Zou L, Vishwanath A and Senthil T 2018 Phys. Rev. X 8 031089 [23] Pizarro J M, Calderón M J and Bascones E 2019 J. Phys. Commun. 3 035024 [24] Isobe H, Yuan N F Q and Fu L 2018 Phys. Rev. X 8 041041 [25] Liu C C, Zhang L D, Chen W Q and Yang F 2018 Phys. Rev. Lett. 121 217001 [26] Kennes D M, Lischner J and Karrasch C 2018 Phys. Rev. B 98 241407 [27] Guo H, Zhu X, Feng S and Scalettar R T 2018 Phys. Rev. B 97 235453 [28] You Y Z, Vishwanath A 2019 npj Quantum Mater. 4 16 [29] Irkhin V Y and Skryabin Y N 2018 JETP Lett. 107 651 [30] Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P and Senthil T 2019 Phys. Rev. B 99 075127 [31] Wu F and Das Sarma S 2020 Phys. Rev. Lett. 124 046403 [32] Zhang Y H, Mao D and Senthil T 2019 Phys. Rev. Res. 1 033126 [33] Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K and Fu L 2018 Phys. Rev. X 8 031087 [34] Kang J and Vafek O 2018 Phys. Rev. X 8 031088 [35] Po H C, Watanabe H and Vishwanath A 2018 Phys. Rev. Lett. 121 126402 [36] Po H C, Zou L, Senthil T and Vishwanath A 2019 Phys. Rev. B 99 195455 [37] Benalcazar W A, Bernevig B A and Hughes T L 2017 Phys. Rev. B 96 245115 [38] Langbehn J, Peng Y, Trifunovic L, von Oppen F and Brouwer P W 2017 Phys. Rev. Lett. 119 246401 [39] Song Z, Fang Z and Fang C 2017 Phys. Rev. Lett. 119 246402 [40] Parameswaran S A and Wan Y 2017 Physics 10 132 [41] Lin Z K, Wu S Q, Wang H X and Jiang J H 2020 Chin. Phys. Lett. 37 074302 [42] Zhang Y, Su Z, Wang Y and Huang L 2023 Appl. Phys. Lett. 123 221102 [43] Li J, Deng C, Zhang K, Lu Q and Yang H 2023 Appl. Phys. Lett. 123 253101 [44] Yang Y, Chen X, Pu Z, Wu J, Huang X, Deng W, Lu J and Liu Z 2024 Phys. Rev. B 109 165406 [45] Han Y, Cui C, Li X P, Zhang T T, Zhang Z, Yu Z M and Yao Y 2024 Phys. Rev. Lett. 133 176602 [46] Tu W, Wu Y J, Liu C C and Li N 2023 EPL 142 16002 [48] ParkMJ, Kim Y, Cho G Y and Lee S 2019 Phys. Rev. Lett. 123 216803 [49] Ahn J, Park S and Yang B J 2019 Phys. Rev. X 9 021013 [50] Liu B B, Zeng X T, Chen C, Chen Z and Sheng X L 2022 Phys. Rev. B 106 035153 [51] Liu B, Xian L, Mu H, Zhao G, Liu Z, Rubio A and Wang Z F 2021 Phys. Rev. Lett. 126 066401 [52] Hua C B, Xiao F, Liu Z R, Sun J H, Gao J H, Chen C Z, Tong Q, Zhou B and Xu D H 2023 Phys. Rev. B 107 L020404 [53] Wan X, Zeng J, Zhu R, Xu D H, Zheng B and Wang R 2025 Phys. Rev. B 111 085137 [54] Hua C and Xu D H 2025 Chin. Phys. B 34 037301 [55] Lucignano P, Alfè D, Cataudella V, Ninno D and Cantele G 2019 Phys. Rev. B 99 195419 [56] Tarnopolsky G, Kruchkov A J and Vishwanath A 2019 Phys. Rev. Lett. 122 106405 [57] Su Y and Lin S Z 2018 Phys. Rev. B 98 195101 [58] Gonzalez Arraga L A, Lado J L, Guinea F and San Jose P 2017 Phys. Rev. Lett. 119 107201 [59] Julku A, Peltonen T J, Liang L, Heikkilä T T and Törmä P 2020 Phys. Rev. B 101 060505 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|