Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 067301    DOI: 10.1088/1674-1056/adc36a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Random flux manipulating topological phase transitions in Chern insulators

Jinkun Wang(王锦坤)1,2, and Wu-Ming Liu(刘伍明)1,2,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  We investigate the localization and topological properties of the Haldane model under the influence of random flux and Anderson disorder. Our localization analysis reveals that random flux induces a transition from insulating to metallic states, while Anderson localization only arises under the modulation of Anderson disorder. By employing real-space topological invariant methods, we demonstrates that the system undergoes topological phase transitions under different disorder manipulations, whereas random flux modulation uniquely induces topological Anderson insulator phases, with the potential to generate states with opposite Chern numbers. These findings highlight the distinct roles of disorder in shaping the interplay between topology and localization, providing insights into stabilizing topological states and designing robust topological quantum materials.
Keywords:  topological phase transitions      disorder system      Chern insulator  
Received:  24 January 2025      Revised:  17 March 2025      Accepted manuscript online:  21 March 2025
PACS:  73.20.-r (Electron states at surfaces and interfaces)  
  73.43.-f (Quantum Hall effects)  
  72.15.Rn (Localization effects (Anderson or weak localization))  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: We thank helpful discussion with Fadi Sun in Great Bay University. Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400900, 2021YFA0718300, and 2021YFA1402100) and the National Natural Science Foundation of China (Grant Nos. 12174461, 12234012, 12334012, and 52327808).
Corresponding Authors:  Wu-Ming Liu     E-mail:  wliu@iphy.ac.cn

Cite this article: 

Jinkun Wang(王锦坤), and Wu-Ming Liu(刘伍明) Random flux manipulating topological phase transitions in Chern insulators 2025 Chin. Phys. B 34 067301

[1] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[2] Verresen R, Thorngren R, Jones N G and Pollmann F 2021 Phys. Rev. X 11 041059
[3] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079
[4] Liu Z R, Chen R and Zhou B 2024 Chin. Phys. Lett. 41 047102
[5] Madail L, Flannigan S, Marques A M, Daley A J and Dias R G 2019 Phys. Rev. B 100 125123
[6] Wang Z, Han Y, Watanabe K, Taniguchi T, Jiang Y and Mao J 2024 Chin. Phys. B 33 067301
[7] Wu B, Li N, Chen X L, Ji W X, Wang P J, Zhang S F and Zhang C W 2024 Chin. Phys. B 33 127301
[8] Rontgen M, Chen X, Gao W, Pyzh M, Schmelcher P, Pagneux V, Achilleos V and Coutant A 2024 Phys. Rev. B 110 035106
[9] Wang Q R and Gu Z C 2018 Phys. Rev. X 8 011055
[10] Mahon P T, Lei C and MacDonald A H 2024 Phys. Rev. Res. 6 023289
[11] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[12] Fulga I C, Pikulin D I and Loring T A 2016 Phys. Rev. Lett. 116 257002
[13] Fu L 2011 Phys. Rev. Lett. 106 106802
[14] Wawer L, Li R and Fleischhauer M 2021 Phys. Rev. A 104 012209
[15] Narozniak M, Dartiailh M C, Dowling J P, Shabani J and Byrnes T · 2021 Phys. Rev. B 103 205429
[16] Chen C, Ding X, Qin J, He Y, Luo Y H, Chen M C, Liu C, Wang X L, Zhang W J, Li H, You L X, Wang Z, Wang D W, Sanders B C, Lu C Y and Pan J W 2018 Phys. Rev. Lett. 121 100502
[17] Lahiri S and Basu S 2024 Sci. Rep. 14 1880
[18] Gao S Y, Xu S, Li H, Yi C J, Nie S M, Rao Z C, Wang H, Hu Q X, Chen X Z, Fan W H, Huang J R, Huang Y B, Pryds N, Shi M, Wang Z J, Shi Y G, Xia T L, Qian T and Ding H 2021 Phys. Rev. X 11 021016
[19] He A L, Ding L R, Zhou Y, Wang Y F and Gong C D 2019 Phys. Rev. B 100 214109
[20] Li C A, Zhang S B, Budich J C and Trauzettel B 2022 Phys. Rev. B 106 L081410
[21] Huang J and Kang J 2024 Phys. Rev. Mater. 8 074604
[22] Kumar A, Chaudhary S and Chandra S 2024 Phys. Rev. Mater. 8 034405
[23] Peng T, Hua C B, Chen R, Liu Z R, Xu D H and Zhou B 2021 Phys. Rev. B 104 245302
[24] Zhang J, Wan F, Wang X, Ding Y, Liao L, Chen Z, Chen M N and Li Y 2022 Phys. Rev. B 106 184202
[25] Zhu W, Teo W X, Li L and Gong J 2021 Phys. Rev. B 103 195414
[26] Groth C W, Wimmer M, Akhmerov A R, Tworzydło J and Beenakker C W J 2009 Phys. Rev. Lett. 103 196805
[27] Tang L Z, Liu S N, Zhang G Q and Zhang D W 2022 Phys. Rev. A 105 063327
[28] Li C, Fu B, Li J and Trauzettel B 2024 arXiv:2411.09780
[29] Mildner J, Caio M D, Moller G, Cooper N R and Bhaseen M J 2023 arXiv:2312.16689
[30] Qiao Z, Han Y, Zhang L, Wang K, Deng X, Jiang H, Yang S A, Wang J and Niu Q 2016 Phys. Rev. Lett. 117 056802
[31] Guo W X and Liu W M 2022 Chin. Phys. B 31 057302
[32] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[33] Mera B, Zhang A and Goldman N 2022 SciPost Phys. 12 018
[34] Vaitiekenas S, Winkler G W, van Heck B, Karzig T, Deng M T, Flens-berg K, Glazman L I, Nayak C, Krogstrup P, Lutchyn R M and Marcus C M 2020 Science 367 eaav3392
[35] Moore J E and Balents L 2007 Phys. Rev. B 75 121306
[36] Shen H, Zhen B and Fu L 2018 Phys. Rev. Lett. 120 146402
[37] Zhao X M, Guo C X, Kou S P, Zhuang L and Liu W M 2021 Phys. Rev. B 104 205131
[38] Zhao X M, Guo C X, Yang M L, Wang H, Liu W M and Kou S P 2021 Phys. Rev. B 104 214502
[39] Chen R, Chen C Z, Gao J H, Zhou B and Xu D H 2020 Phys. Rev. Lett. 124 036803
[40] Pai S and Prem A 2019 Phys. Rev. B 100 155135
[41] Osseweijer Z, Eek L, Moustaj A, Fremling M and Smith C M 2024 arXiv:2407.20075
[42] Bienias P, Boettcher I, Belyansky R, Kollar A J and Gorshkov A V 2022 Phys. Rev. Lett. 128 013601
[43] Urwyler D M, Lenggenhager P M, Boettcher I, Thomale R, Neupert T and Bzdusek T C T 2022 Phys. Rev. Lett. 129 246402
[44] Bianco R and Resta R 2011 Phys. Rev. B 84 241106
[45] Kitaev A 2006 Ann. Phys. 321 2
[46] Liu Z R, Hua C B, Peng T and Zhou B 2022 Phys. Rev. B 105 245301
[47] Chen Y K, Liu Q h, Zou B and Zhang Y 2023 Phys. Rev. B 107 054109
[48] Brzezinska M, Cook A M and Neupert T 2018 Phys. Rev. B 98 205116
[49] Ruihua Fan P Z and Gu Y arXiv.2211.04510
[50] Toniolo D 2022 Lett. Math. Phys. 112 126
[51] Mitchell N P, Turner A M and Irvine W T M 2021 Phys. Rev. E 104 025007
[52] Resta R 1998 Phys. Rev. Lett. 80 1800
[53] Lin L, Ke Y, Zhang L and Lee C 2023 Phys. Rev. B 108 174204
[54] Continentino M A, Rufo S and Rufo G M 2020 Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory, eds. Ferraz A, Gupta K S, Semenoff G W and Sodano P (Cham:Springer International Publishing) pp. 289-307
[55] Ge Y and Rigol M 2017 Phys. Rev. A 96 023610
[56] De Tomasi G and Khaymovich I M 2020 Phys. Rev. Lett. 124 200602
[57] Oganesyan V and Huse D A 2007 Phys. Rev. B 75 155111
[58] Atas Y Y, Bogomolny E, Giraud O and Roux G 2013 Phys. Rev. Lett. 110 084101
[1] Topological transmission and topological corner states combiner in all-dielectric honeycomb valley photonic crystals
Ming Sun(孙铭), Xiao-Fang Xu(许孝芳), Yun-Feng Shen(沈云峰), Ya-Qing Chang(常雅箐), and Wen-Ji Zhou(周文佶). Chin. Phys. B, 2025, 34(3): 034206.
[2] Field induced Chern insulating states in twisted monolayer-bilayer graphene
Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Chin. Phys. B, 2024, 33(6): 067301.
[3] Interacting topological magnons in a checkerboard ferromagnet
Heng Zhu(朱恒), Hongchao Shi(施洪潮), Zhengguo Tang(唐政国), and Bing Tang(唐炳). Chin. Phys. B, 2024, 33(3): 037503.
[4] Valley modulation and topological phase transition in staggered kagome ferromagnets
Yuheng Xing(邢玉恒), Wenjuan Qiu(邱文娟), Xinxing Wu(吴新星), and Yue Tan(谭悦). Chin. Phys. B, 2024, 33(12): 127503.
[5] Strain-modulated antiferromagnetic Chern insulator in NiOsCl6 monolayer
Bin Wu(武斌), Na Li(李娜), Xin-Lian Chen(陈新莲), Wei-Xiao Ji(纪维霄), Pei-Ji Wang(王培吉), Shu-Feng Zhang(张树峰), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(12): 127301.
[6] “Glass-quake” in elastically loaded bulk metallic glasses
Qi Huang(黄琦), Kaiguo Chen(陈开果), Chen Liu(刘辰), Guisen Liu(刘桂森), Yang Shao(邵洋), Chenlong Zhao(赵晨龙), Ran Chen(陈然), Hengtong Bu(卜亨通), Lingti Kong(孔令体), and Yao Shen(沈耀). Chin. Phys. B, 2024, 33(11): 116402.
[7] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[8] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[9] Thermal Hall effect and the Wiedemann-Franz law in Chern insulator
Anxin Wang(王安新) and Tao Qin(秦涛). Chin. Phys. B, 2023, 32(10): 107301.
[10] Revealing Chern number from quantum metric
Anwei Zhang(张安伟). Chin. Phys. B, 2022, 31(4): 040201.
No Suggested Reading articles found!