Random flux manipulating topological phase transitions in Chern insulators
Jinkun Wang(王锦坤)1,2, and Wu-Ming Liu(刘伍明)1,2,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
Abstract We investigate the localization and topological properties of the Haldane model under the influence of random flux and Anderson disorder. Our localization analysis reveals that random flux induces a transition from insulating to metallic states, while Anderson localization only arises under the modulation of Anderson disorder. By employing real-space topological invariant methods, we demonstrates that the system undergoes topological phase transitions under different disorder manipulations, whereas random flux modulation uniquely induces topological Anderson insulator phases, with the potential to generate states with opposite Chern numbers. These findings highlight the distinct roles of disorder in shaping the interplay between topology and localization, providing insights into stabilizing topological states and designing robust topological quantum materials.
(Surface states, band structure, electron density of states)
Fund: We thank helpful discussion with Fadi Sun in Great Bay University. Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400900, 2021YFA0718300, and 2021YFA1402100) and the National Natural Science Foundation of China (Grant Nos. 12174461, 12234012, 12334012, and 52327808).
Corresponding Authors:
Wu-Ming Liu
E-mail: wliu@iphy.ac.cn
Cite this article:
Jinkun Wang(王锦坤), and Wu-Ming Liu(刘伍明) Random flux manipulating topological phase transitions in Chern insulators 2025 Chin. Phys. B 34 067301
[1] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [2] Verresen R, Thorngren R, Jones N G and Pollmann F 2021 Phys. Rev. X 11 041059 [3] Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S and Ueda M 2018 Phys. Rev. X 8 031079 [4] Liu Z R, Chen R and Zhou B 2024 Chin. Phys. Lett. 41 047102 [5] Madail L, Flannigan S, Marques A M, Daley A J and Dias R G 2019 Phys. Rev. B 100 125123 [6] Wang Z, Han Y, Watanabe K, Taniguchi T, Jiang Y and Mao J 2024 Chin. Phys. B 33 067301 [7] Wu B, Li N, Chen X L, Ji W X, Wang P J, Zhang S F and Zhang C W 2024 Chin. Phys. B 33 127301 [8] Rontgen M, Chen X, Gao W, Pyzh M, Schmelcher P, Pagneux V, Achilleos V and Coutant A 2024 Phys. Rev. B 110 035106 [9] Wang Q R and Gu Z C 2018 Phys. Rev. X 8 011055 [10] Mahon P T, Lei C and MacDonald A H 2024 Phys. Rev. Res. 6 023289 [11] Haldane F D M 1988 Phys. Rev. Lett. 61 2015 [12] Fulga I C, Pikulin D I and Loring T A 2016 Phys. Rev. Lett. 116 257002 [13] Fu L 2011 Phys. Rev. Lett. 106 106802 [14] Wawer L, Li R and Fleischhauer M 2021 Phys. Rev. A 104 012209 [15] Narozniak M, Dartiailh M C, Dowling J P, Shabani J and Byrnes T · 2021 Phys. Rev. B 103 205429 [16] Chen C, Ding X, Qin J, He Y, Luo Y H, Chen M C, Liu C, Wang X L, Zhang W J, Li H, You L X, Wang Z, Wang D W, Sanders B C, Lu C Y and Pan J W 2018 Phys. Rev. Lett. 121 100502 [17] Lahiri S and Basu S 2024 Sci. Rep. 14 1880 [18] Gao S Y, Xu S, Li H, Yi C J, Nie S M, Rao Z C, Wang H, Hu Q X, Chen X Z, Fan W H, Huang J R, Huang Y B, Pryds N, Shi M, Wang Z J, Shi Y G, Xia T L, Qian T and Ding H 2021 Phys. Rev. X 11 021016 [19] He A L, Ding L R, Zhou Y, Wang Y F and Gong C D 2019 Phys. Rev. B 100 214109 [20] Li C A, Zhang S B, Budich J C and Trauzettel B 2022 Phys. Rev. B 106 L081410 [21] Huang J and Kang J 2024 Phys. Rev. Mater. 8 074604 [22] Kumar A, Chaudhary S and Chandra S 2024 Phys. Rev. Mater. 8 034405 [23] Peng T, Hua C B, Chen R, Liu Z R, Xu D H and Zhou B 2021 Phys. Rev. B 104 245302 [24] Zhang J, Wan F, Wang X, Ding Y, Liao L, Chen Z, Chen M N and Li Y 2022 Phys. Rev. B 106 184202 [25] Zhu W, Teo W X, Li L and Gong J 2021 Phys. Rev. B 103 195414 [26] Groth C W, Wimmer M, Akhmerov A R, Tworzydło J and Beenakker C W J 2009 Phys. Rev. Lett. 103 196805 [27] Tang L Z, Liu S N, Zhang G Q and Zhang D W 2022 Phys. Rev. A 105 063327 [28] Li C, Fu B, Li J and Trauzettel B 2024 arXiv:2411.09780 [29] Mildner J, Caio M D, Moller G, Cooper N R and Bhaseen M J 2023 arXiv:2312.16689 [30] Qiao Z, Han Y, Zhang L, Wang K, Deng X, Jiang H, Yang S A, Wang J and Niu Q 2016 Phys. Rev. Lett. 117 056802 [31] Guo W X and Liu W M 2022 Chin. Phys. B 31 057302 [32] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005 [33] Mera B, Zhang A and Goldman N 2022 SciPost Phys. 12 018 [34] Vaitiekenas S, Winkler G W, van Heck B, Karzig T, Deng M T, Flens-berg K, Glazman L I, Nayak C, Krogstrup P, Lutchyn R M and Marcus C M 2020 Science 367 eaav3392 [35] Moore J E and Balents L 2007 Phys. Rev. B 75 121306 [36] Shen H, Zhen B and Fu L 2018 Phys. Rev. Lett. 120 146402 [37] Zhao X M, Guo C X, Kou S P, Zhuang L and Liu W M 2021 Phys. Rev. B 104 205131 [38] Zhao X M, Guo C X, Yang M L, Wang H, Liu W M and Kou S P 2021 Phys. Rev. B 104 214502 [39] Chen R, Chen C Z, Gao J H, Zhou B and Xu D H 2020 Phys. Rev. Lett. 124 036803 [40] Pai S and Prem A 2019 Phys. Rev. B 100 155135 [41] Osseweijer Z, Eek L, Moustaj A, Fremling M and Smith C M 2024 arXiv:2407.20075 [42] Bienias P, Boettcher I, Belyansky R, Kollar A J and Gorshkov A V 2022 Phys. Rev. Lett. 128 013601 [43] Urwyler D M, Lenggenhager P M, Boettcher I, Thomale R, Neupert T and Bzdusek T C T 2022 Phys. Rev. Lett. 129 246402 [44] Bianco R and Resta R 2011 Phys. Rev. B 84 241106 [45] Kitaev A 2006 Ann. Phys. 321 2 [46] Liu Z R, Hua C B, Peng T and Zhou B 2022 Phys. Rev. B 105 245301 [47] Chen Y K, Liu Q h, Zou B and Zhang Y 2023 Phys. Rev. B 107 054109 [48] Brzezinska M, Cook A M and Neupert T 2018 Phys. Rev. B 98 205116 [49] Ruihua Fan P Z and Gu Y arXiv.2211.04510 [50] Toniolo D 2022 Lett. Math. Phys. 112 126 [51] Mitchell N P, Turner A M and Irvine W T M 2021 Phys. Rev. E 104 025007 [52] Resta R 1998 Phys. Rev. Lett. 80 1800 [53] Lin L, Ke Y, Zhang L and Lee C 2023 Phys. Rev. B 108 174204 [54] Continentino M A, Rufo S and Rufo G M 2020 Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory, eds. Ferraz A, Gupta K S, Semenoff G W and Sodano P (Cham:Springer International Publishing) pp. 289-307 [55] Ge Y and Rigol M 2017 Phys. Rev. A 96 023610 [56] De Tomasi G and Khaymovich I M 2020 Phys. Rev. Lett. 124 200602 [57] Oganesyan V and Huse D A 2007 Phys. Rev. B 75 155111 [58] Atas Y Y, Bogomolny E, Giraud O and Roux G 2013 Phys. Rev. Lett. 110 084101
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.