CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Highly responsive photodetectors based on NiPS3/WS2 van der Waals type-II heterostructures |
Zhiteng Li(李志腾)1, Ian Wang(王易安)2, Zhenming Qiu(邱振铭)1, Lin Wang(王琳)3, Xiaofeng Liu(刘小峰)3, Zhengwei Chen(陈政委)1,†, and Xiao Zhang(张晓)1,‡ |
1 State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 The High School Affiliated to Renmin University of China, Beijing 100080, China; 3 School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract A heterostructure photodetector composed of few-layer NiPS$_{3}$/WS$_{2}$ is made by using mechanical exfoliation and micro-nano fabrication techniques. The photodetector exhibits a broad-band response wavelengths of ranging of 405 nm and 800 nm. Under the light illumination of 405-nm wavelength and a bias voltage of $-2$ V, the photoresponsivity is 62.6 mA/W and the specific detectivity is 8.59$\times10^{10}$ Jones. In addition, the device demonstrates a relatively fast response with rise and fall times of 70 ms and 120 ms. Theoretical calculation suggest that this excellent performance can be ascribed to the type-II band alignment at the NiPS$_{3}$/WS$_{2}$ heterostructure interface.
|
Received: 15 September 2024
Revised: 19 November 2024
Accepted manuscript online: 13 December 2024
|
PACS:
|
72.40.+w
|
(Photoconduction and photovoltaic effects)
|
|
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
79.60.Jv
|
(Interfaces; heterostructures; nanostructures)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFE0109200) and the National Natural Science Foundation of China (Grant Nos. 12074013 and 62175210). |
Corresponding Authors:
Zhengwei Chen, Xiao Zhang
E-mail: qq619755720@bupt.edu.cn;zhangxiaobupt@bupt.edu.cn
|
Cite this article:
Zhiteng Li(李志腾), Ian Wang(王易安), Zhenming Qiu(邱振铭), Lin Wang(王琳), Xiaofeng Liu(刘小峰), Zhengwei Chen(陈政委), and Xiao Zhang(张晓) Highly responsive photodetectors based on NiPS3/WS2 van der Waals type-II heterostructures 2025 Chin. Phys. B 34 027201
|
[1] Lemme M C, Akinwande D, Huyghebaert C and Stampfer C 2022 Nat. Commun. 13 1392 [2] Shanmugam V, Mensah R A, Babu K, Gawusu S, Chanda A, Tu Y, Neisiany R E, Försth M, Sas G and Das O 2022 Part. Part. Syst. Charact. 39 2200031 [3] Ahmed A, Iqbal M Z, Dahshan A, Aftab S, Hegazy H H and Yousef E S 2024 Nanoscale 16 2097 [4] Khan K, Tareen A K, Aslam M, Wang R, Zhang Y, Mahmood A, Ouyang Z, Zhang H and Guo Z 2020 J. Mater. Chem. C 8 387 [5] Xie C, Mak C, Tao X and Yan F 2016 Adv. Funct. Mater. 27 1603886 [6] Kim K, Lim S Y, Kim J, Lee J U, Lee S, Kim P, Park K, Son S, Park C H and Park J G 2019 2D Mater. 6 041001 [7] Kumar R, Jenjeti R N, Austeria M P and Sampath S 2019 J. Mater. Chem. C 7 324 [8] Gao Y, Lei S, Kang T, Fei L, Mak C L, Yuan J, Zhang M, Li S, Bao Q, Zeng Z, Wang Z, Gu H and Zhang K 2018 Nanotechnology 29 244001 [9] Ahn E C 2020 npj 2D Mater. Appl. 4 17 [10] Li H, Ruan S and Zeng Y 2019 Adv. Mater. 31 1900065 [11] Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q and Kloc C 2016 ACS Nano 10 1738 [12] Duan J, Chava P, AslMG, Lu Y F, Erb D, Hu L, Echresh A, Rebohle L, Erbe A, Krasheninnikov A V, Helm M, Zeng Y J, Zhou S and Prucnal S 2022 ACS Appl. Mater. Interfaces 14 11927 [13] Ho C H, Hsu T Y and Muhimmah L C 2021 npj 2D Mater Appl. 5 8 [14] Chu J, Wang F, Yin L, Lei L, Yan C, Wang F, Wen Y, Wang Z, Jiang C, Feng L, Xiong J, Li Y and He J 2017 Adv. Funct. Mater. 27 1701342 [15] Zong L, Song J, Wang S, Chen W, Yang J, Li B, Hu P, Fan H, Teng F and Zhao X 2023 J. Mater. Chem. C 12 593 [16] Balapure A, Dutta J R and Ganesan R 2024 RSC Appl. Interfaces 1 43 [17] Cao X, Yan S, Li Z, Fang Z, Wang L, Liu X, Chen Z, Lei H and Zhang X 2023 J. Phys. Chem. Lett. 14 11529 [18] Zhao H, Yan Y, Song X, Ma Z, Tian T, Jiang Y, Li X, Xia C and Li J 2021 Nanoscale 13 3757 [19] Chen Y, Wang Y, Wang Z, Gu Y, Ye Y, Chai X, Ye J, Chen Y, Xie R, Zhou Y, Hu Z, Li Q, Zhang L, Wang F, Wang P, Miao J, Wang J, Chen X, Lu W and Hu W 2021 Nat. Electron. 4 357 [20] Wang Z, Zhang H,WangW, Tan C, Chen J, Yin S, Zhang H, Zhu A, Li G, Du Y, Wang S, Liu F and Li L 2022 ACS Appl. Mater. Interfaces 14 37926 [21] Tauc J, Grigorovici R and Vancu A 1966 Phys. Status. Solidi B 15 627 [22] Kraut E A, Grant R W, Waldrop J R and Kowalczyk S P 1980 Phys. Rev. Lett. 44 1620 [23] Tan Q, Luo W, Li T, Cao J, Kitadai H, Wang X and Ling X 2022 Appl. Phys. Rev. 9 041406 [24] Hsu C, Frisenda R, Schmidt R, Arora A, de Vasconcellos S M, Bratschitsch R, van der Zant H S J and Castellanos-Gomez A 2019 Adv. Opt. Mater. 7 1900239 [25] Lane C and Zhu J X 2020 Phys. Rev. B 102 075124 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|