Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 027201    DOI: 10.1088/1674-1056/ad9e97
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Highly responsive photodetectors based on NiPS3/WS2 van der Waals type-II heterostructures

Zhiteng Li(李志腾)1, Ian Wang(王易安)2, Zhenming Qiu(邱振铭)1, Lin Wang(王琳)3, Xiaofeng Liu(刘小峰)3, Zhengwei Chen(陈政委)1,†, and Xiao Zhang(张晓)1,‡
1 State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 The High School Affiliated to Renmin University of China, Beijing 100080, China;
3 School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Abstract  A heterostructure photodetector composed of few-layer NiPS$_{3}$/WS$_{2}$ is made by using mechanical exfoliation and micro-nano fabrication techniques. The photodetector exhibits a broad-band response wavelengths of ranging of 405 nm and 800 nm. Under the light illumination of 405-nm wavelength and a bias voltage of $-2$ V, the photoresponsivity is 62.6 mA/W and the specific detectivity is 8.59$\times10^{10}$ Jones. In addition, the device demonstrates a relatively fast response with rise and fall times of 70 ms and 120 ms. Theoretical calculation suggest that this excellent performance can be ascribed to the type-II band alignment at the NiPS$_{3}$/WS$_{2}$ heterostructure interface.
Keywords:  heterojunction      photodetector      NiPS$_{3}$      WS$_{2}$  
Received:  15 September 2024      Revised:  19 November 2024      Accepted manuscript online:  13 December 2024
PACS:  72.40.+w (Photoconduction and photovoltaic effects)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFE0109200) and the National Natural Science Foundation of China (Grant Nos. 12074013 and 62175210).
Corresponding Authors:  Zhengwei Chen, Xiao Zhang     E-mail:  qq619755720@bupt.edu.cn;zhangxiaobupt@bupt.edu.cn

Cite this article: 

Zhiteng Li(李志腾), Ian Wang(王易安), Zhenming Qiu(邱振铭), Lin Wang(王琳), Xiaofeng Liu(刘小峰), Zhengwei Chen(陈政委), and Xiao Zhang(张晓) Highly responsive photodetectors based on NiPS3/WS2 van der Waals type-II heterostructures 2025 Chin. Phys. B 34 027201

[1] Lemme M C, Akinwande D, Huyghebaert C and Stampfer C 2022 Nat. Commun. 13 1392
[2] Shanmugam V, Mensah R A, Babu K, Gawusu S, Chanda A, Tu Y, Neisiany R E, Försth M, Sas G and Das O 2022 Part. Part. Syst. Charact. 39 2200031
[3] Ahmed A, Iqbal M Z, Dahshan A, Aftab S, Hegazy H H and Yousef E S 2024 Nanoscale 16 2097
[4] Khan K, Tareen A K, Aslam M, Wang R, Zhang Y, Mahmood A, Ouyang Z, Zhang H and Guo Z 2020 J. Mater. Chem. C 8 387
[5] Xie C, Mak C, Tao X and Yan F 2016 Adv. Funct. Mater. 27 1603886
[6] Kim K, Lim S Y, Kim J, Lee J U, Lee S, Kim P, Park K, Son S, Park C H and Park J G 2019 2D Mater. 6 041001
[7] Kumar R, Jenjeti R N, Austeria M P and Sampath S 2019 J. Mater. Chem. C 7 324
[8] Gao Y, Lei S, Kang T, Fei L, Mak C L, Yuan J, Zhang M, Li S, Bao Q, Zeng Z, Wang Z, Gu H and Zhang K 2018 Nanotechnology 29 244001
[9] Ahn E C 2020 npj 2D Mater. Appl. 4 17
[10] Li H, Ruan S and Zeng Y 2019 Adv. Mater. 31 1900065
[11] Du K Z, Wang X Z, Liu Y, Hu P, Utama M I B, Gan C K, Xiong Q and Kloc C 2016 ACS Nano 10 1738
[12] Duan J, Chava P, AslMG, Lu Y F, Erb D, Hu L, Echresh A, Rebohle L, Erbe A, Krasheninnikov A V, Helm M, Zeng Y J, Zhou S and Prucnal S 2022 ACS Appl. Mater. Interfaces 14 11927
[13] Ho C H, Hsu T Y and Muhimmah L C 2021 npj 2D Mater Appl. 5 8
[14] Chu J, Wang F, Yin L, Lei L, Yan C, Wang F, Wen Y, Wang Z, Jiang C, Feng L, Xiong J, Li Y and He J 2017 Adv. Funct. Mater. 27 1701342
[15] Zong L, Song J, Wang S, Chen W, Yang J, Li B, Hu P, Fan H, Teng F and Zhao X 2023 J. Mater. Chem. C 12 593
[16] Balapure A, Dutta J R and Ganesan R 2024 RSC Appl. Interfaces 1 43
[17] Cao X, Yan S, Li Z, Fang Z, Wang L, Liu X, Chen Z, Lei H and Zhang X 2023 J. Phys. Chem. Lett. 14 11529
[18] Zhao H, Yan Y, Song X, Ma Z, Tian T, Jiang Y, Li X, Xia C and Li J 2021 Nanoscale 13 3757
[19] Chen Y, Wang Y, Wang Z, Gu Y, Ye Y, Chai X, Ye J, Chen Y, Xie R, Zhou Y, Hu Z, Li Q, Zhang L, Wang F, Wang P, Miao J, Wang J, Chen X, Lu W and Hu W 2021 Nat. Electron. 4 357
[20] Wang Z, Zhang H,WangW, Tan C, Chen J, Yin S, Zhang H, Zhu A, Li G, Du Y, Wang S, Liu F and Li L 2022 ACS Appl. Mater. Interfaces 14 37926
[21] Tauc J, Grigorovici R and Vancu A 1966 Phys. Status. Solidi B 15 627
[22] Kraut E A, Grant R W, Waldrop J R and Kowalczyk S P 1980 Phys. Rev. Lett. 44 1620
[23] Tan Q, Luo W, Li T, Cao J, Kitadai H, Wang X and Ling X 2022 Appl. Phys. Rev. 9 041406
[24] Hsu C, Frisenda R, Schmidt R, Arora A, de Vasconcellos S M, Bratschitsch R, van der Zant H S J and Castellanos-Gomez A 2019 Adv. Opt. Mater. 7 1900239
[25] Lane C and Zhu J X 2020 Phys. Rev. B 102 075124
[1] Lewis acid-doped transition metal dichalcogenides for ultraviolet-visible photodetectors
Heng Yang(杨恒), Mingjun Ma(马明军), Yongfeng Pei(裴永峰), Yufan Kang(康雨凡), Jialu Yan(延嘉璐), Dong He(贺栋), Changzhong Jiang(蒋昌忠), Wenqing Li(李文庆), and Xiangheng Xiao(肖湘衡). Chin. Phys. B, 2024, 33(9): 098501.
[2] Linear dichroism transition and polarization-sensitive photodetector of quasi-one-dimensional palladium bromide
Wan-Li Zhu(朱万里), Wei-Li Zhen(甄伟立), Rui Niu(牛瑞), Ke-Ke Jiao(焦珂珂), Zhi-Lai Yue(岳智来), Hui-Jie Hu(胡慧杰), Fei Xue(薛飞), and Chang-Jin Zhang(张昌锦). Chin. Phys. B, 2024, 33(6): 068101.
[3] BaTiO3/p-GaN/Au self-driven UV photodetector with bipolar photocurrent controlled by ferroelectric polarization
Wushuang Han(韩无双), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Yongxue Zhu(朱勇学), Zhen Cheng(程祯), Xing Chen(陈星), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2024, 33(4): 047701.
[4] Magnetic proximity effect in the two-dimensional ε-Fe2O3/NbSe2 heterojunction
Bingyu Che(车冰玉), Guojing Hu(胡国静), Chao Zhu(朱超), Hui Guo(郭辉), Senhao Lv(吕森浩), Xuanye Liu(刘轩冶), Kang Wu(吴康), Zhen Zhao(赵振), Lulu Pan(潘禄禄), Ke Zhu(祝轲), Qi Qi(齐琦), Yechao Han(韩烨超), Xiao Lin(林晓), Zi'an Li(李子安), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), Zheng Liu(刘政), Jiadong Zhou(周家东), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2024, 33(2): 027502.
[5] Sensitivity investigation of 100-MeV proton irradiation to SiGe HBT single event effect
Ya-Hui Feng(冯亚辉), Hong-Xia Guo(郭红霞), Yi-Wei Liu(刘益维), Xiao-Ping Ouyang(欧阳晓平), Jin-Xin Zhang(张晋新), Wu-Ying Ma(马武英), Feng-Qi Zhang(张凤祁), Ru-Xue Bai(白如雪), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2024, 33(1): 016104.
[6] High responsivity photodetectors based on graphene/WSe2 heterostructure by photogating effect
Shuping Li(李淑萍), Ting Lei(雷挺), Zhongxing Yan(严仲兴), Yan Wang(王燕), Like Zhang(张黎可), Huayao Tu(涂华垚), Wenhua Shi(时文华), and Zhongming Zeng(曾中明). Chin. Phys. B, 2024, 33(1): 018501.
[7] Design optimization of a silicon-germanium heterojunction negative capacitance gate-all-around tunneling field effect transistor based on a simulation study
Weijie Wei(魏伟杰), Weifeng Lü(吕伟锋), Ying Han(韩颖), Caiyun Zhang(张彩云), and Dengke Chen(谌登科). Chin. Phys. B, 2023, 32(9): 097301.
[8] NiO/β-Ga2O3 heterojunction diodes with ultra-low leakage current below 10-10 A and high thermostability
Yi Huang(黄义), Wen Yang(杨稳), Qi Wang(王琦), Sheng Gao(高升), Wei-Zhong Chen(陈伟中), Xiao-Sheng Tang(唐孝生), Hong-Sheng Zhang(张红升), and Bin Liu(刘斌). Chin. Phys. B, 2023, 32(9): 098502.
[9] Temperature dependence of single-event transients in SiGe heterojunction bipolar transistors for cryogenic applications
Xiaoyu Pan(潘霄宇), Hongxia Guo(郭红霞), Yahui Feng(冯亚辉), Yinong Liu(刘以农), Jinxin Zhang(张晋新), Jun Fu(付军), and Guofang Yu(喻国芳). Chin. Phys. B, 2023, 32(9): 098503.
[10] Ultra-high photoresponsive photodetector based on ReS2/SnS2 heterostructure
Binghui Wang(王冰辉), Yanhui Xing(邢艳辉), Shengyuan Dong(董晟园), Jiahao Li(李嘉豪), Jun Han(韩军), Huayao Tu(涂华垚), Ting Lei(雷挺), Wenxin He(贺雯馨), Baoshun Zhang(张宝顺), and Zhongming Zeng(曾中明). Chin. Phys. B, 2023, 32(9): 098504.
[11] High performance solar-blind deep ultraviolet photodetectors via β-phase (In0.09Ga0.91)2O3 single crystalline film
Bicheng Wang(王必成), Ziying Tang(汤梓荧), Huying Zheng(郑湖颖), Lisheng Wang(王立胜), Yaqi Wang(王亚琪), Runchen Wang(王润晨), Zhiren Qiu(丘志仁), and Hai Zhu(朱海). Chin. Phys. B, 2023, 32(9): 098508.
[12] Sensitivity study of the SiGe heterojunction bipolar transistor single event effect based on pulsed laser and technology computer-aided design simulation
Ya-Hui Feng(冯亚辉), Hong-Xia Guo(郭红霞), Xiao-Yu Pan(潘霄宇), Jin-Xin Zhang(张晋新),Xiang-Li Zhong(钟向丽), Hong Zhang(张鸿), An-An Ju(琚安安),Ye Liu(刘晔), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(6): 066105.
[13] A SiC asymmetric cell trench MOSFET with a split gate and integrated p+-poly Si/SiC heterojunction freewheeling diode
Kaizhe Jiang(蒋铠哲), Xiaodong Zhang(张孝冬), Chuan Tian(田川), Shengrong Zhang(张升荣),Liqiang Zheng(郑理强), Rongzhao He(赫荣钊), and Chong Shen(沈重). Chin. Phys. B, 2023, 32(5): 058504.
[14] Thickness effect on solar-blind photoelectric properties of ultrathin β-Ga2O3 films prepared by atomic layer deposition
Shao-Qing Wang(王少青), Ni-Ni Cheng(程妮妮), Hai-An Wang(王海安), Yi-Fan Jia(贾一凡), Qin Lu(陆芹), Jing Ning(宁静), Yue Hao(郝跃), Xiang-Tai Liu(刘祥泰), and Hai-Feng Chen(陈海峰). Chin. Phys. B, 2023, 32(4): 048502.
[15] A self-powered ultraviolet photodetector based on a Ga2O3/Bi2WO6 heterojunction with low noise and stable photoresponse
Li-Li Yang(杨莉莉), Yu-Si Peng(彭宇思), Zeng Liu(刘增), Mao-Lin Zhang(张茂林),Yu-Feng Guo(郭宇锋), Yong Yang(杨勇), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(4): 047301.
No Suggested Reading articles found!