|
|
Possible coexistence of superconductivity and topological electronic states in 1T-RhSeTe |
Tengdong Zhang(张腾东)1†, Rui Fan(樊睿)1†, Yan Gao(高炎)1, Yanling Wu(吴艳玲)1, Xiaodan Xu(徐晓丹)1, Dao-Xin Yao(姚道新)2‡, and Jun Li(李军)1§ |
1 Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China; 2 State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China |
|
|
Abstract Transition metal dichalcogenides (TMDs), exhibit a range of crystal structures and topological quantum states. The 1T phase, in particular, shows promise for superconductivity driven by electron-phonon coupling (EPC), strain, pressure, and chemical doping. In this theoretical investigation, we explore 1T-RhSeTe as a novel type of TMD superconductor with topological electronic states. The optimal doping structure and atomic arrangement of 1T-RhSeTe are constructed. Phonon spectrum calculations validate the integrity of the constructed doping structure. The analysis of the electron-phonon coupling using the electron-phonon Wannier (EPW) method has confirmed the existence of a robust electron-phonon interaction in 1T-RhSeTe, resulting in total EPC constant λ = 2.02, the logarithmic average frequency ωlog = 3.15 meV and Tc = 4.61 K, consistent with experimental measurements and indicative of its classification as a BCS superconductor. The band structure analysis revealed the presence of Dirac-like band crossing points. The topological non-trivial electronic structures of the 1T-RhSeTe are confirmed via the evolution of Wannier charge centers (WCCs) and time-reversal symmetry-protected topological surface states (TSSs). These distinctive properties underscore 1T-RhSeTe as a possible candidate for a topological superconductor, warranting further investigation into its potential implications and applications.
|
Received: 14 October 2024
Revised: 26 December 2024
Accepted manuscript online: 31 December 2024
|
PACS:
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
63.20.kd
|
(Phonon-electron interactions)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
74.62.Dh
|
(Effects of crystal defects, doping and substitution)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12204400), Science Research Project of Hebei Education Department (Grant No. QN2022169), the Natural Science Foundation of Hebei Province (Grant Nos. A2022203010 and A2024203011), Innovation Capability Improvement Project of Hebei Province (Grant No. 22567605H). |
Corresponding Authors:
Dao-Xin Yao, Jun Li
E-mail: yaodaox@mail.sysu.edu.cn;ljcj007@ysu.edu.cn
|
Cite this article:
Tengdong Zhang(张腾东), Rui Fan(樊睿), Yan Gao(高炎), Yanling Wu(吴艳玲), Xiaodan Xu(徐晓丹), Dao-Xin Yao(姚道新), and Jun Li(李军) Possible coexistence of superconductivity and topological electronic states in 1T-RhSeTe 2025 Chin. Phys. B 34 027403
|
[1] Di Sante D, Das P K, Bigi C, Ergonenc Z, Gurtler N, Krieger J A, Schmitt T, Ali M N, Rossi G, Thomale R, Franchini C, Picozzi S, Fujii J, Strocov V N, Sangiovanni G, Vobornik I, Cava R J and Panaccione G 2017 Phys. Rev. Lett. 119 026403 [2] Wu S, Fatemi V, Gibson Q D, Watanabe K, Taniguchi T, Cava R J and Jarillo-Herrero P 2018 Science 359 76 [3] Costanzo D, Jo S, Berger H and Morpurgo A F 2016 Nat. Nanotechnol. 11 339 [4] Fang Y, Pan J, He J, Luo R, Wang D, Che X, Bu K, Zhao W, Liu P, Mu G, Zhang H, Lin T and Huang F 2018 Angewandte Chemie International Edition 57 1232 [5] Bruyer E, Di Sante D, Barone P, Stroppa A, Whangbo M H and Picozzi S 2016 Phys. Rev. B 94 195402 [6] Strachan J, Masters A F and Maschmeyer T 2021 ACS Applied Energy Materials 4 7405 [7] Lian C S, Si C and Duan W 2020 Nano Lett. 21 709 [8] He W Y, Zhou B T, He J J, Yuan N F Q, Zhang T and Law K T 2018 Commun. Phys. 1 1 [9] Zhao C X, Liu J N, Li B Q, Ren D, Chen X, Yu J and Zhang Q 2020 Adv. Funct. Mater. 30 2003619 [10] Kusmartseva A F, Sipos B, Berger H, Forro L and Tutis E 2009 Phys. Rev. Lett. 103 236401 [11] Xiao R C, Gong P L, Wu Q S, Lu W J, Wei M J, Li J Y, Lv H Y, Luo X, Tong P, Zhu X B and Sun Y P 2017 Phys. Rev. B 96 075101 [12] He Q L, Liu H, He M, Lai Y H, He H, Wang G, Law K T, Lortz R, Wang J and Sou I K 2014 Nat. Commun. 5 4247 [13] Ermolaev G, Voronin K, Baranov D G, Kravets V, Tselikov G, Stebunov Y, Yakubovsky D, Novikov S, Vyshnevyy A, Mazitov A, Kruglov I, Zhukov S, Romanov R, Markeev A M, Arsenin A, Novoselov K S, Grigorenko A N and Volkov V 2022 Nat. Commun. 13 2049 [14] Yan M, Huang H, Zhang K, Wang E, Yao W, Deng K, Wan G, Zhang H, Arita M, Yang H, Sun Z, Yao H, Wu Y, Fan S, Duan W and Zhou S 2017 Nat. Commun. 8 257 [15] Tanisha T T, Hossain M S, Hiramony N T, Rasul A, Hasan M Z and Khosru Q D M 2024 arXiv:2401.13124[cond-mat.mtrl-sci] [16] Sato M and Ando Y 2017 Reports on Progress in Physics 80 076501 [17] Gu K Y, Luo T C, Ge J and Wang J 2020 Acta Phys. Sin. 69 020301(in Chinese) [18] Nayak C, Simon S H, Stern A, Freedman M and Das Sarma S 2008 Rev. Mod. Phys. 80 1083 [19] Sarma S D, Freedman M and Nayak C 2015 npj Quantum Information 1 1 [20] Liu C C, Lu C, Zhang L D, Wu X, Fang C and Yang F 2020 Phys. Rev. Res. 2 033050 [21] Fidkowski L 2010 Phys. Rev. Lett. 104 130502 [22] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [23] Patra C, Agarwal T, Arushi, Manna P, Bhatt N, Singh R S and Singh R P 2023 arXiv:2311.01019[cond-mat.supr-con] [24] Geller S 1955 J. Am. Chem. Soc. 77 2641 [25] Lurgo F E, Pomiro F, Carbonio R E and Sanchez R D 2022 Phys. Rev. B 105 104104 [26] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [27] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [28] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [29] Klimes J, Bowler D R and Michaelides A 2009 J. Phys.:Condens. Matter 22 022201 [30] Giannozzi P, Andreussi O, Brumme T, et al. 2017 J. Phys.:Condens. Matter 29 465901 [31] Mostofi A A, Yates J R, Pizzi G, Lee Y S, Souza I, Vanderbilt D and Marzari N 2014 Computer Physics Communications 185 2309 [32] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Computer Physics Communications 178 685 [33] Ponce S, Margine E R, Verdi C and Giustino F 2016 Computer Physics Communications 209 116 [34] Allen P B 1972 Phys. Rev. B 6 2577 [35] Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 [36] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Computer Physics Communications 224 405 [37] Yu R, Qi X L, Bernevig A, Fang Z and Dai X 2011 Phys. Rev. B 84 075119 [38] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 [39] Soluyanov A A and Vanderbilt D 2011 Phys. Rev. B 83 035108 [40] Chen W, Shen T, Feng Y, Liu C, Liu X and Wu Y 2023 Physica Scripta 98 105531 [41] Akiba K and Kobayashi T C 2023 Phys. Rev. B 107 245117 [42] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 [43] Li X D, Yu Z D, Chen W P and Gong C D 2022 Chin. Phys. B 31 110304 [44] Zhu Z L, Liu Z L, Wu X, Li X Y, Shi J A, Liu C, Qian G J, Zheng Q, Huang L, Lin X, Wang J O, Chen H, Zhou W, Sun J T, Wang Y L and Gao H J 2022 Chin. Phys. B 31 077101 [45] Wang Z, Dong H, Zhou W, Cheng Z and Wang S 2023 Chin. Phys. B 32 067103 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|