| SPECIAL TOPIC — AI + Physical Science |
Prev
Next
|
|
|
Sequential phase transformations in Ta0.4Ti2Zr alloy via tensile molecular dynamics simulations with deep potential |
| Hongyang Liu(刘洪洋)1,2,3, Rong Chen(陈荣)1, Bo Chen(陈博)1,2,3,†, Jingzhi He(贺靖之)4, Dongdong Kang(康冬冬)1,2,3, and Jiayu Dai(戴佳钰)1,2,3,‡ |
1 College of Science, National University of Defense Technology, Changsha 410073, China; 2 Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, 410073, China; 3 Hunan Research Center of the Basic Discipline for Physical States, National University of Defense Technology, Changsha 410073, China; 4 College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China |
|
|
|
|
Abstract Understanding the complex deformation mechanisms of non-equimolar multi-principal element alloys (MPEAs) requires high-fidelity atomic-scale simulations. This study develops a deep potential (DP) model to enable molecular dynamics simulations of the Ta$_{0.4}$Ti$_{2}$Zr (Ta$_{0.4}$) alloy. Monte Carlo simulations using this potential reveal Ta atom precipitation in the Ta$_{0.4}$ alloy. Under uniaxial tensile loading along the [100] direction in the NPT ensemble, the alloy undergoes a remarkable sequence of phase transformations: an initial body-centered cubic (BCC$_{1}$) to face-centered cubic (FCC) transformation, followed by a reverse transformation from FCC to a distinct BCC phase (BCC$_{2}$), and finally a BCC$_{2}$ to hexagonal close-packed (HCP) transformation. Critically, the reverse FCC to BCC$_{2}$ transformation induces significant volume contraction. We demonstrate that the inversely transformed BCC$_{2}$ phase primarily accommodates compressive stress. Concurrently, the reorientation of BCC$_{2}$ crystals contributes substantially to the observed high strain hardening. These simulations provide atomic-scale insights into the dynamic structural evolution, sequential phase transformations, and stress partitioning during deformation of the Ta$_{0.4}$ alloy. The developed DP model and the revealed mechanisms offer fundamental theoretical guidance for accelerating the design of high-performance MPEAs.
|
Received: 11 October 2025
Revised: 08 November 2025
Accepted manuscript online: 12 November 2025
|
|
PACS:
|
71.15.Pd
|
(Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)
|
| |
61.66.Dk
|
(Alloys )
|
| |
02.70.Ns
|
(Molecular dynamics and particle methods)
|
| |
64.75.Nx
|
(Phase separation and segregation in solid solutions)
|
|
| Fund: This work was supported by the National University of Defense Technology Research Fund Project, the National Natural Science Foundation of China (Grant No. 12534013), and the Science and Technology Innovation Program of Hunan Province (Grant Nos. 2025ZYJ001 and 2021RC4026). |
Corresponding Authors:
Bo Chen, Jiayu Dai
E-mail: chenbochain@nudt.edu.cn;jydai@nudt.edu.cn
|
Cite this article:
Hongyang Liu(刘洪洋), Rong Chen(陈荣), Bo Chen(陈博), Jingzhi He(贺靖之), Dongdong Kang(康冬冬), and Jiayu Dai(戴佳钰) Sequential phase transformations in Ta0.4Ti2Zr alloy via tensile molecular dynamics simulations with deep potential 2026 Chin. Phys. B 35 017102
|
[1] Zhang Z, Zhang H, Tang Y, Zhu L, Ye Y, Li S and Bai S 2017 Mater. Des. 133 435 [2] Senkov O N, Senkova S V, Woodward C and Miracle D B 2013 Acta Mater. 61 1545 [3] Senkov O N, Wilks G B, Scott J M and Miracle D B 2011 Intermetallics 19 698 [4] Senkov O N, Scott J M, Senkova S V, Meisenkothen F, Miracle D B and Woodward C F 2012 J. Mater. Sci. 47 4062 [5] Zherebtsov S, Yurchenko N, Shaysultanov D, Tikhonovsky M and Stepanov N 2020 Adv. Eng. Mater. 22 2000105 [6] Eleti R R, Stepanov N and Zherebtsov S 2020 Scr. Mater. 188 118 [7] Mills L H, Emigh M G, Frey C H, Philips N R, Murray S P, Shin J, Gianola D S and Pollock T M 2023 Acta Mater. 245 118618 [8] Huang H, Wu Y, He J, Wang H, Liu X, An K, Wu W and Lu Z 2017 Adv. Mater. 29 1701678 [9] Wang S, Shu D, Shi P, Zhang X, Mao B, Wang D, Liaw P K and Sun B 2024 J. Mater. Sci. Technol. 187 72 [10] Tong Y, Bai L, Liang X, Chen Y, Zhang Z, Liu J, Li Y and Hu Y 2020 Intermetallics 126 106928 [11] Senkov O N, Kuhr S J, Shank J M, Payton E J and Woodward C 2021 Mater. Sci. Eng. A 814 141168 [12] He J, Tang Y, Zhang Z, Li S, Ye Y, Luo H and Bai S 2022 Corros. Sci. 209 110778 [13] Zhang C, Xie S, Li X, Sun R, Liu B, Liu W, Yu Q, Xiong H, Zhang R and Yin H 2024 J. Alloys Compd. 992 174578 [14] Wu Y, Zhang Y, Li Z, Liu Z, Zhao E and Liu J 2024 J. Mater. Res. Technol. 30 8854 [15] Lu J, Wang J, Wan K, Chen Y, Wang H and Shi X 2023 J. Chem. Phys. 158 204702 [16] Wang T, Li J, Wang M, Li C, Su Y, Xu S and Li X G 2024 npj Comput. Mater. 10 143 [17] Yin S, Zuo Y, Anas A O, Hui Z, Li X, Ding J, Ong S P, Asta M and Ritchie R O 2021 Nat. Commun. 12 4873 [18] Zhao L, Zong H, Ding X and Lookman T 2021 Acta Mater. 209 116801 [19] Zhou X, Wu H, Wu Y, Liu X, Peng X, Hou S and Lu Z 2024 Acta Mater. 281 120364 [20] Santos-Florez P A, Dai S, Yao Y, Yanxon H, Li L, Wang Y, Zhu Q and Yu X 2023 Acta Mater. 255 119041 [21] Kostiuchenko T, Kormann F, Neugebauer J and Shapeev A 2019 npj Comput. Mater. 5 55 [22] Ferrari A, Kormann F, Asta M and Neugebauer J 2023 Nat. Comput. Sci. 3 221 [23] Wen T, Zhang L, Wang H, Weinan E and Srolovitz D J 2022 Mater. Futures 1 022601 [24] Chang X, Chen B, Zeng Q, Wang H, Chen K, Tong Q, Yu X, Kang D, Zhang S and Guo F 2024 Nat. Commun. 15 8543 [25] Zeng Q, Chen B, Zhang S, Kang D, Wang H, Yu X and Dai J 2023 npj Comput. Mater. 9 213 [26] Chang X, Kang D, Chen B and Dai J 2025 Chin. Phys. Lett. 42 053704 [27] Qiu R, Zeng Q, Han J, Chen K, Kang D, Yu X and Dai J 2025 Phys. Rev. B 111 064103 [28] Du W, Fan X, Xiao B, Sun J, Wang Q, Tang Y, Zhang L, Goddard W A and Liu Y 2025 Acta Mater. 285 120712 [29] Li X, Chen C, Zheng H, Zuo Y and Ong S P 2020 npj Comput. Mater. 6 10 [30] Xiao R, Wang Q, Qin J, Zhao J, Ruan Y, Wang H, Li H and Wei B 2023 J. Appl. Phys. 133 085102 [31] Zhou Y, Srinivasan P, Kormann F, Grabowski B, Smith R, Goddard P and Duff I A 2022 Phys. Rev. B 105 214302 [32] Zhang Y, Wang H, Chen W, Zeng J, Zhang L, Wang H and Weinan E 2019 Comput. Phys. Commun. 253 107206 [33] Yang F, Zeng Q, Chen B, Kang D, Zhang S, Wu J, Yu X and Dai J 2022 Chin. Phys. Lett. 39 116301 [34] Han J, Zeng Q, Chen K, Yu X and Dai J 2023 Nanomaterials 13 1576 [35] Guo F, Chen B, Zeng Q, Yu X, Chen K, Kang D, Du Y, Wu J and Dai J 2023 J. Chem. Phys. 159 204702 [36] Kresse G and Furthmuller J 1996 Comput. Mater. Sci 6 15 [37] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [39] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [40] Zeng J, Zhang D, Lu D, Mo P, Li Z, Chen Y, Rynik M, Huang L A, Li Z and Shi S 2023 J. Chem. Phys. 159 054801 [41] Zhang D, Bi H, Dai F, Jiang W, Liu X, Zhang L and Wang H 2024 npj Comput. Mater. 10 94 [42] Plimpton S 1995 J. Comput. Phys. 117 1 [43] Cowley J M 1950 Phys. Rev. 77 669 [44] Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 015012 [45] Larsen P M, Schmidt S and Schiøtz J 2016 Modell. Simul. Mater. Sci. Eng. 24 055007 [46] Stukowski A 2012 Modell. Simul. Mater. Sci. Eng. 20 045021 [47] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D and Ceder G 2013 APL Mater. 1 011002 [48] Kittel C and McEuen P 2018 Introduction to Solid State Physics, 8th edn. (Beijing: Chemical Industry Press) pp. 16 (in Chinese) [49] Chen Y, Feng H, Li J, Liu B, Jiang C, Liu Y, Fang Q and Liaw P K 2024 Proc. Natl. Acad. Sci. USA 121 1 [50] Xun K, Zhang B, Wang Q, Zhang Z, Ding J and Ma E 2023 J. Mater. Sci. Technol. 135 221 [51] Li J, Fang Q, Liu B and Liu Y 2018 Acta Mater. 147 35 [52] Bae J W, Jung J, Kim J G, Park J M, Harjo S, Kawasaki T, Woo W and Kim H S 2020 Materialia 9 100619 [53] Wu Y and Shao J 2023 Int. J. Plast. 169 103730 [54] Wei J and Lu R 2023 Int. J. Plast. 173 103867 [55] Pan Z, Li Y and Wei Q 2008 Acta Mater. 56 3470 [56] Mostafa A, Vu L, Guo Z, Shargh A K, Dey A, Askari H and Abdolrahim N 2024 Comput. Mater. Sci 244 113273 [57] Wen X, Wu Y, Huang H, Jiang S, Wang H, Liu X, Zhang Y, Wang X and Lu Z 2021 Mater. Sci. Eng. A 805 140798 [58] Tsianikas S, Chen Y, Jeong J, Zhang S and Xie Z 2021 Nanoscale 13 3602 [59] Lu S, Sun X, Tian Y, An X, Li W, Chen Y, Zhang H and Vitos L 2023 PNAS Nexus 2 pgac282 [60] Chen Y, Chen D, An X, Zhang Y, Zhou Z, Lu S, Munroe P, Zhang S, Liao X and Zhu T 2021 Acta Mater. 215 117112 [61] Sandoval L, Urbassek H M and Entel P 2009 New J. Phys. 11 103027 [62] An K, Ou X and Song M 2022 J. Nonferrous Met. 32 2989 [63] Cayron C 2013 Acta Crystallogr. A 69 498 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|