Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 068502    DOI: 10.1088/1674-1056/ad2609
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters utilizing zero-line modes in a three-terminal device

Xiao-Long Lü(吕小龙)1, Jia-En Yang(杨加恩)2,†, and Hang Xie(谢航)2,3,‡
1 College of Science, Guangxi University of Science and Technology, Liuzhou 545006, China;
2 College of Physics, Chongqing University, Chongqing 401331, China;
3 Chongqing Key Laboratory for Strongly-Coupled Physics, Chongqing University, Chongqing 401331, China
Abstract  Topological zero-line modes (ZLMs) with spin and valley degrees of freedom give rise to spin, valley and spin-valley transport, which support a platform for exploring quantum transport physics and potential applications in spintronic/valleytronic devices. In this work, we investigate the beam-splitting behaviors of the charge current due to the ZLMs in a three-terminal system. We show that with certain combinations of ZLMs, the incident charge current along the interface between different topological phases can be divided into different polarized currents with unit transmittance in two outgoing terminals. As a result, fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters are generated. The mechanism of these splitters is attributed to the cooperative effects of the distribution of the ZLMs and the intervalley and intravalley scatterings that are modulated by the wave-vector mismatch and group velocity mismatch. Interestingly, half-quantized transmittance of these scatterings is found in a fully spin-valley-polarized electron beam splitter. Furthermore, the results indicate that these splitters can be applicable to graphene, silicene, germanene and stanene due to their robustness against the spin-orbit coupling. Our findings offer a new way to understand the transport mechanism and investigate the promising applications of ZLMs.
Keywords:  topological zero-line modes      spin polarization      valley polarization      quantum transport  
Received:  30 August 2023      Revised:  29 January 2024      Accepted manuscript online:  05 February 2024
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  05.60.Gg (Quantum transport)  
  73.20.At (Surface states, band structure, electron density of states)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12304058, 12204073, and 12147102), Guangxi Science and Technology Base and Talent Project (Grant No. 2022AC21077), Natural Science Foundation of Guangxi Province (Grant No. 2024GXNSFBA010229), and Foundation of Guangxi University of Science and Technology (Grant No. 21Z52).
Corresponding Authors:  Jia-En Yang, Hang Xie     E-mail:  yangjiaen309@163.com;xiehangphy@cqu.edu.cn

Cite this article: 

Xiao-Long Lü(吕小龙), Jia-En Yang(杨加恩), and Hang Xie(谢航) Fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters utilizing zero-line modes in a three-terminal device 2024 Chin. Phys. B 33 068502

[1] Ezawa M 2013 Phys. Rev. Lett. 110 026603
[2] Pan H, Li Z S, Liu C C, Zhu G B, Qiao Z H and Yao Y G 2014 Phys. Rev. Lett. 112 106802
[3] Zhao X Y, Wang Z T, Chen J P and Wang B 2023 J. Phys. Condens. Mat. 35 095401
[4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[5] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and YamadaTakamura Y 2012 Phys. Rev. Lett. 108 245501
[6] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[7] Bianco E, Butler S, Jiang S S, Restrepo O D, Windl W and Goldberger J E 2013 ACS Nano 7 4414
[8] Davila M E, Xian L, Cahangirov S, Rubio A and Le Lay G 2014 New J. Phys. 16 095002
[9] Xu Y, Yan B H, Zhang H J, Wang J, Xu G, Tang P Z, Duan W H and Zhang S C 2013 Phys. Rev. Lett. 111 136804
[10] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
[11] Ezawa M 2015 J. Phys. Soc. Jpn. 84 121003
[12] Frank T, Hogl P, Gmitra M, Kochan D and Fabian J 2018 Phys. Rev. Lett. 120 156402
[13] Hogl P, Frank T, Zollner K, Kochan D, Gmitra M and Fabian J 2020 Phys. Rev. Lett. 124 136403
[14] Xu Y F, Ma J S and Jin G J 2021 Phys. Rev. B 104 045416
[15] Zhuang Y C and Sun Q F 2022 Phys. Rev. B 106 165417
[16] Lu W T, Sun Q F, Li Y F and Tian H Y 2021 Phys. Rev. B 104 195419
[17] Yang J E, Lü X L and Xie H 2023 Commun. Phys. 6 62
[18] Han Y L, Pan S Y and Qiao Z H 2023 Phys. Rev. B 108 115302
[19] Liang W H, Hou T, Zeng J J, Liu Z, Han Y L and Qiao Z H 2023 Phys. Rev. B 107 075303
[20] Ren Y F, Zeng J J, Wang K, Xu F M and Qiao Z H 2017 Phys. Rev. B 96 155445
[21] Liu D P, Yu Z M and Liu Y L 2016 Phys. Rev. B 94 155112
[22] Xu Y F and Jin G J 2017 Phys. Rev. B 95 155425
[23] Zhang C X, Lu X L and Xie H 2020 J. Phys. D 53 195302
[24] Han Y L, You S Y and Qiao Z H 2022 Phys. Rev. B 105 155301
[25] Rzeszotarski B, Mrenca-Kolasinska A and Szafran B 2020 Phys. Rev. B 101 115308
[26] Wang Z B, Cheng S G, Liu X and Jiang H 2021 Nanotechnology 32 402001
[27] You S Y, Hou T, Li Z T and Qiao Z H 2022 Phys. Rev. B 106 L161413
[28] Martin I, Blanter Y M and Morpurgo A F 2008 Phys. Rev. Lett. 100 036804
[29] Schaibley J R, Yu H Y, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X D 2016 Nat. Rev. Mater. 1 16055
[30] Jana K and Muralidharan B 2022 Npj 2D Mater. Appl. 6 19
[31] Sun Y M, Zhao H, Yu Z M and Pan H 2019 J. Appl. Phys. 125 123904
[32] Yang J E, Lu X L, Zhang C X and Xie H 2020 New. J. Phys. 22 053034
[33] Zhou T, Cheng S G, Schleenvoigt M, Schuffelgen P, Jiang H, Yang Z Q and Zutic I 2021 Phys. Rev. Lett. 127 116402
[34] Hsieh S H and Chu C S 2016 Appl. Phys. Lett. 108 033113
[35] Qiao Z H, Jung J, Lin C W, Ren Y F, MacDonald A H and Niu Q 2014 Phys. Rev. Lett. 112 206601
[36] Sanz S, Brandimarte P, Giedke G, Sánchez-Portal D and Frederiksen T 2020 Phys. Rev. B 102 035436
[37] Sanz S, Papior N, Giedke G, Sánchez-Portal D, Brandbyge M and Frederiksen T 2022 Phys. Rev. Lett. 129 037701
[38] Zhai F, Ma Y L and Chang K 2011 New J. Phys. 13 083029
[39] Zhu W W, Long Y, Chen H and Ren J 2019 Phys. Rev. B 99 115410
[40] Lü X L, Xie H, Yang J E, Li R X, Du L, Chen H J and Zhang H S 2023 New J. Phys. 25 023016
[41] Lü X L and Xie H 2020 New J. Phys. 22 073003
[42] Lu X L and Xie H 2022 Commun. Theor. Phys. 74 035702
[43] Mohan P, Saxena R, Kundu A and Rao S 2016 Phys. Rev. B 94 235419
[44] Eckardt A and Anisimovas E 2015 New J. Phys. 17 093039
[45] Zheng J, Xiang Y, Li C L, Yuan R Y, Chi F and Guo Y 2020 Phys. Rev. Appl. 14 034027
[46] Yokoyama T 2013 Phys. Rev. B 87 241409
[47] Zollner K, Gmitra M, Frank T and Fabian J 2016 Phys. Rev. B 94 155441
[48] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
[49] Dyrdal A and Barnas J 2017 2D Mater. 4 034003
[50] Ando T 1991 Phys. Rev. B 44 8017
[51] Khomyakov P A, Brocks G, Karpan V, Zwierzycki M and Kelly P J 2005 Phys. Rev. B 72 035450
[52] Zhang H S, Wang Y Y, Yang W J, Zhang J J, Xu X H and Liu F 2021 Nano Lett. 21 5823
[1] Effect of lattice distortion on spin admixture and quantum transport in organic devices with spin-orbit coupling
Ying Wang(王莹), Dan Li(李丹), Xinying Sun(孙新英), Huiqing Zhang(张惠晴), Han Ma(马晗), Huixin Li(李慧欣), Junfeng Ren(任俊峰), Chuankui Wang(王传奎), and Guichao Hu(胡贵超). Chin. Phys. B, 2024, 33(7): 077101.
[2] Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system
Jin-Song Huang(黄劲松), Hong-Wu Huang(黄红武), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉). Chin. Phys. B, 2024, 33(5): 050506.
[3] Anomalous valley Hall effect in two-dimensional valleytronic materials
Hongxin Chen(陈洪欣), Xiaobo Yuan(原晓波), and Junfeng Ren(任俊峰). Chin. Phys. B, 2024, 33(4): 047304.
[4] Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction
Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2024, 33(4): 047201.
[5] Electric modulation of the Fermi arc spin transport via three-terminal configuration in topological semimetal nanowires
Guang-Yu Zhu(祝光宇), Ji-Ai Ning(宁纪爱), Jian-Kun Wang(王建坤), Xin-Jie Liu(刘心洁), Jia-Jie Yang(杨佳洁), Ben-Chuan Lin(林本川), and Shuo Wang(王硕). Chin. Phys. B, 2024, 33(1): 017305.
[6] Recent progress on valley polarization and valley-polarized topological states in two-dimensional materials
Fei Wang(王斐), Yaling Zhang(张亚玲), Wenjia Yang(杨文佳), Huisheng Zhang(张会生), and Xiaohong Xu(许小红). Chin. Phys. B, 2024, 33(1): 017306.
[7] Progress on two-dimensional ferrovalley materials
Ping Li(李平), Bang Liu(刘邦), Shuai Chen(陈帅), Wei-Xi Zhang(张蔚曦), and Zhi-Xin Guo(郭志新). Chin. Phys. B, 2024, 33(1): 017505.
[8] Electrically controllable spin filtering in zigzag phosphorene nanoribbon based normal—antiferromagnet—normal junctions
Ruigang Li(李锐岗), Jun-Feng Liu(刘军丰), and Jun Wang(汪军). Chin. Phys. B, 2024, 33(1): 017304.
[9] Valleytronic topological filters in silicene-like inner-edge systems
Hang Xie(谢航), Xiao-Long Lü(吕小龙), and Jia-En Yang(杨加恩). Chin. Phys. B, 2024, 33(1): 018502.
[10] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[11] Negative magnetoresistance in Dirac semimetal Cd3As2 with in-plane magnetic field perpendicular to current
Hao-Nan Cui(崔浩楠), Guang-Yu Zhu(祝光宇), Jian-Kun Wang(王建坤), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Ben-Chuan Lin(林本川), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), and Da-Peng Yu(俞大鹏). Chin. Phys. B, 2023, 32(7): 077305.
[12] Valley polarization in transition metal dichalcogenide layered semiconductors: Generation, relaxation, manipulation and transport
Hui Ma(马惠), Yaojie Zhu(朱耀杰), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Xilin Zhang(张喜林), Yanbo Ren(任琰博), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2023, 32(10): 107201.
[13] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[14] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[15] Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias
Sai-Yan Chen(陈赛艳), Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽). Chin. Phys. B, 2022, 31(1): 017201.
No Suggested Reading articles found!