INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters utilizing zero-line modes in a three-terminal device |
Xiao-Long Lü(吕小龙)1, Jia-En Yang(杨加恩)2,†, and Hang Xie(谢航)2,3,‡ |
1 College of Science, Guangxi University of Science and Technology, Liuzhou 545006, China; 2 College of Physics, Chongqing University, Chongqing 401331, China; 3 Chongqing Key Laboratory for Strongly-Coupled Physics, Chongqing University, Chongqing 401331, China |
|
|
Abstract Topological zero-line modes (ZLMs) with spin and valley degrees of freedom give rise to spin, valley and spin-valley transport, which support a platform for exploring quantum transport physics and potential applications in spintronic/valleytronic devices. In this work, we investigate the beam-splitting behaviors of the charge current due to the ZLMs in a three-terminal system. We show that with certain combinations of ZLMs, the incident charge current along the interface between different topological phases can be divided into different polarized currents with unit transmittance in two outgoing terminals. As a result, fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters are generated. The mechanism of these splitters is attributed to the cooperative effects of the distribution of the ZLMs and the intervalley and intravalley scatterings that are modulated by the wave-vector mismatch and group velocity mismatch. Interestingly, half-quantized transmittance of these scatterings is found in a fully spin-valley-polarized electron beam splitter. Furthermore, the results indicate that these splitters can be applicable to graphene, silicene, germanene and stanene due to their robustness against the spin-orbit coupling. Our findings offer a new way to understand the transport mechanism and investigate the promising applications of ZLMs.
|
Received: 30 August 2023
Revised: 29 January 2024
Accepted manuscript online: 05 February 2024
|
PACS:
|
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
05.60.Gg
|
(Quantum transport)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12304058, 12204073, and 12147102), Guangxi Science and Technology Base and Talent Project (Grant No. 2022AC21077), Natural Science Foundation of Guangxi Province (Grant No. 2024GXNSFBA010229), and Foundation of Guangxi University of Science and Technology (Grant No. 21Z52). |
Corresponding Authors:
Jia-En Yang, Hang Xie
E-mail: yangjiaen309@163.com;xiehangphy@cqu.edu.cn
|
Cite this article:
Xiao-Long Lü(吕小龙), Jia-En Yang(杨加恩), and Hang Xie(谢航) Fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters utilizing zero-line modes in a three-terminal device 2024 Chin. Phys. B 33 068502
|
[1] Ezawa M 2013 Phys. Rev. Lett. 110 026603 [2] Pan H, Li Z S, Liu C C, Zhu G B, Qiao Z H and Yao Y G 2014 Phys. Rev. Lett. 112 106802 [3] Zhao X Y, Wang Z T, Chen J P and Wang B 2023 J. Phys. Condens. Mat. 35 095401 [4] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [5] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and YamadaTakamura Y 2012 Phys. Rev. Lett. 108 245501 [6] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501 [7] Bianco E, Butler S, Jiang S S, Restrepo O D, Windl W and Goldberger J E 2013 ACS Nano 7 4414 [8] Davila M E, Xian L, Cahangirov S, Rubio A and Le Lay G 2014 New J. Phys. 16 095002 [9] Xu Y, Yan B H, Zhang H J, Wang J, Xu G, Tang P Z, Duan W H and Zhang S C 2013 Phys. Rev. Lett. 111 136804 [10] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020 [11] Ezawa M 2015 J. Phys. Soc. Jpn. 84 121003 [12] Frank T, Hogl P, Gmitra M, Kochan D and Fabian J 2018 Phys. Rev. Lett. 120 156402 [13] Hogl P, Frank T, Zollner K, Kochan D, Gmitra M and Fabian J 2020 Phys. Rev. Lett. 124 136403 [14] Xu Y F, Ma J S and Jin G J 2021 Phys. Rev. B 104 045416 [15] Zhuang Y C and Sun Q F 2022 Phys. Rev. B 106 165417 [16] Lu W T, Sun Q F, Li Y F and Tian H Y 2021 Phys. Rev. B 104 195419 [17] Yang J E, Lü X L and Xie H 2023 Commun. Phys. 6 62 [18] Han Y L, Pan S Y and Qiao Z H 2023 Phys. Rev. B 108 115302 [19] Liang W H, Hou T, Zeng J J, Liu Z, Han Y L and Qiao Z H 2023 Phys. Rev. B 107 075303 [20] Ren Y F, Zeng J J, Wang K, Xu F M and Qiao Z H 2017 Phys. Rev. B 96 155445 [21] Liu D P, Yu Z M and Liu Y L 2016 Phys. Rev. B 94 155112 [22] Xu Y F and Jin G J 2017 Phys. Rev. B 95 155425 [23] Zhang C X, Lu X L and Xie H 2020 J. Phys. D 53 195302 [24] Han Y L, You S Y and Qiao Z H 2022 Phys. Rev. B 105 155301 [25] Rzeszotarski B, Mrenca-Kolasinska A and Szafran B 2020 Phys. Rev. B 101 115308 [26] Wang Z B, Cheng S G, Liu X and Jiang H 2021 Nanotechnology 32 402001 [27] You S Y, Hou T, Li Z T and Qiao Z H 2022 Phys. Rev. B 106 L161413 [28] Martin I, Blanter Y M and Morpurgo A F 2008 Phys. Rev. Lett. 100 036804 [29] Schaibley J R, Yu H Y, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X D 2016 Nat. Rev. Mater. 1 16055 [30] Jana K and Muralidharan B 2022 Npj 2D Mater. Appl. 6 19 [31] Sun Y M, Zhao H, Yu Z M and Pan H 2019 J. Appl. Phys. 125 123904 [32] Yang J E, Lu X L, Zhang C X and Xie H 2020 New. J. Phys. 22 053034 [33] Zhou T, Cheng S G, Schleenvoigt M, Schuffelgen P, Jiang H, Yang Z Q and Zutic I 2021 Phys. Rev. Lett. 127 116402 [34] Hsieh S H and Chu C S 2016 Appl. Phys. Lett. 108 033113 [35] Qiao Z H, Jung J, Lin C W, Ren Y F, MacDonald A H and Niu Q 2014 Phys. Rev. Lett. 112 206601 [36] Sanz S, Brandimarte P, Giedke G, Sánchez-Portal D and Frederiksen T 2020 Phys. Rev. B 102 035436 [37] Sanz S, Papior N, Giedke G, Sánchez-Portal D, Brandbyge M and Frederiksen T 2022 Phys. Rev. Lett. 129 037701 [38] Zhai F, Ma Y L and Chang K 2011 New J. Phys. 13 083029 [39] Zhu W W, Long Y, Chen H and Ren J 2019 Phys. Rev. B 99 115410 [40] Lü X L, Xie H, Yang J E, Li R X, Du L, Chen H J and Zhang H S 2023 New J. Phys. 25 023016 [41] Lü X L and Xie H 2020 New J. Phys. 22 073003 [42] Lu X L and Xie H 2022 Commun. Theor. Phys. 74 035702 [43] Mohan P, Saxena R, Kundu A and Rao S 2016 Phys. Rev. B 94 235419 [44] Eckardt A and Anisimovas E 2015 New J. Phys. 17 093039 [45] Zheng J, Xiang Y, Li C L, Yuan R Y, Chi F and Guo Y 2020 Phys. Rev. Appl. 14 034027 [46] Yokoyama T 2013 Phys. Rev. B 87 241409 [47] Zollner K, Gmitra M, Frank T and Fabian J 2016 Phys. Rev. B 94 155441 [48] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722 [49] Dyrdal A and Barnas J 2017 2D Mater. 4 034003 [50] Ando T 1991 Phys. Rev. B 44 8017 [51] Khomyakov P A, Brocks G, Karpan V, Zwierzycki M and Kelly P J 2005 Phys. Rev. B 72 035450 [52] Zhang H S, Wang Y Y, Yang W J, Zhang J J, Xu X H and Liu F 2021 Nano Lett. 21 5823 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|