| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Intrinsic higher-order topological states in two-dimensional honeycomb quantum spin Hall insulators |
| Sibin Lü(吕思彬) and Jun Hu(胡军)† |
| Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China |
|
|
|
|
Abstract The exploration of topological phases remains a cutting-edge research frontier, driven by their promising potential for next-generation electronic and quantum technologies. In this work, we employ first-principles calculations and tight-binding modeling to systematically investigate the topological properties of freestanding two-dimensional (2D) honeycomb Bi, HgTe, and Al$_{2}$O$_{3}$(0001)-supported HgTe. Remarkably, all three systems exhibit coexistence of intrinsic first- and higher-order topological insulator states, induced by spin-orbit coupling (SOC). These states manifest as topologically protected gapless edge states in one-dimensional (1D) nanoribbons and symmetry-related corner states in zero-dimensional (0D) nanoflakes. Furthermore, fractional electron charges may accumulate at the corners of armchair-edged nanoflakes. Among these materials, HgTe/Al$_{2}$O$_{3}$(0001) is particularly promising due to its experimentally feasible atomic configuration and low-energy corner states. Our findings highlight the importance of exploring higher-order topological phases in quantum spin Hall insulators and pave the way for new possibilities in device applications.
|
Received: 05 April 2025
Revised: 23 May 2025
Accepted manuscript online: 26 May 2025
|
|
PACS:
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
| |
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
| |
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
| Fund: Project supported by the Program for Science and Technology Innovation Team in Zhejiang Province, China (Grant No. 2021R01004), the Six Talent Peaks Project of Jiangsu Province, China (Grant No. 2019-XCL-081), and the Startup Funding of Ningbo University and Yongjiang Recruitment Project (Grant No. 432200942). |
Corresponding Authors:
Jun Hu
E-mail: hujun2@nbu.edu.cn
|
| About author: 2025-117303-250588.pdf |
Cite this article:
Sibin Lü(吕思彬) and Jun Hu(胡军) Intrinsic higher-order topological states in two-dimensional honeycomb quantum spin Hall insulators 2025 Chin. Phys. B 34 117303
|
[1] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 [2] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 [3] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 [4] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 [5] Rachel S 2018 Rep. Prog. Phys. 81 116501 [6] He M, Sun H and He Q L 2019 Front. Phys. 14 43401 [7] Breunig O and Ando Y 2022 Nat. Rev. Phys. 4 184 [8] Benalcazar W A, Bernevig B A and Hughes T L 2017 Science 357 61 [9] Song Z, Fang Z and Fang C 2017 Phys. Rev. Lett. 119 246402 [10] Langbehn J, Peng Y, Trifunovic L, von Oppen F and Brouwer P W 2017 Phys. Rev. Lett. 119 246401 [11] Schindler F, Cook A M, Vergniory M G, Wang Z, Parkin S S P, Bernevig B A and Neupert T 2018 Sci. Adv. 4 eaat0346 [12] Ezawa M 2018 Phys. Rev. Lett. 120 026801 [13] Chen R, Chen C Z, Gao J H, Zhou B and Xu D H 2020 Phys. Rev. Lett. 124 036803 [14] Wang K T, Xu F,Wang B, Yu Y andWei Y 2022 Front. Phys. 17 43501 [15] Dai X and Chen Q 2024 Phys. Rev. B 109 144108 [16] Gao Y, Zhang L, Zhang Y Y and Du S 2024 Phys. Rev. B 110 125103 [17] Wang J D, Li J R, Zhang L L, Jiang C and Gong W J 2024 Phys. Scr. 99 085953 [18] Xie B,Wang H X, Zhang X, Zhan P, Jiang J H, Lu M and Chen Y 2021 Nat. Rev. Phys. 3 520 [19] Liu F and Wakabayashi K 2021 Phys. Rev. Res. 3 023121 [20] Liu B, Zhao G, Liu Z and Wang Z F 2019 Nano Lett. 19 6492 [21] Chen C, Wu W, Yu Z M, Chen Z, Zhao Y X, Sheng X L and Yang S A 2021 Phys. Rev. B 104 085205 [22] Zhou Y and Wu R 2023 Phys. Rev. B 107 035412 [23] Sheng X L, Chen C, Liu H, Chen Z, Yu Z M, Zhao Y X and Yang S A 2019 Phys. Rev. Lett. 123 256402 [24] Lee E, Kim R, Ahn J and Yang B J 2020 npj Quantum Mater. 5 1 [25] Park M J, Jeon S, Lee S, Park H C and Kim Y 2021 Carbon 174 260 [26] Hua C and Xu D H 2025 Chin. Phys. B 34 037301 [27] Chen H, Liu Z R, Chen R and Zhou B 2023 Chin. Phys. B 33 017202 [28] Chen X T, Liu C H, Xu D H and Chen C Z 2023 Chin. Phys. Lett. 40 097403 [29] Schindler F, Wang Z, Vergniory M G, Cook A M, Murani A, Sengupta S, Kasumov A Y, Deblock R, Jeon S, Drozdov I, Bouchiat H, Guéron S, Yazdani A, Bernevig B A and Neupert T 2018 Nat. Phys. 14 918 [30] Yue C, Xu Y, Song Z, Weng H, Lu Y M, Fang C and Dai X 2019 Nat. Phys. 15 577 [31] Canyellas R, Liu C, Arouca R, Eek L, Wang G, Yin Y, Guan D, Li Y, Wang S, Zheng H, Liu C, Jia J and Smith C M 2024 Nat. Phys. 20 1421 [32] Chen C, Song Z, Zhao J Z, Chen Z, Yu Z M, Sheng X L and Yang S A 2020 Phys. Rev. Lett. 125 056402 [33] Han B, Zeng J and Qiao Z 2022 Chin. Phys. Lett. 39 017302 [34] Liu L, An J, Ren Y, Zhang Y T, Qiao Z and Niu Q 2024 Phys. Rev. B 110 115427 [35] Yang Y, Chen X, Pu Z, Wu J, Huang X, Deng W, Lu J and Liu Z 2024 Phys. Rev. B 109 165406 [36] Xu W, Xue Y, Zhu Y, Xu W and Yang Z 2024 Phys. Rev. Mater. 8 074001 [37] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [38] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [39] Blöchl P E 1994 Phys. Rev. B 50 17953 [40] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [41] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048 [42] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419 [43] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 [44] Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 244 405 [45] Coh S and Vanderbilt D Python Tight Binding (PythTB) (2022), Zenodo https://doi.org/10.5281/zenodo.12721315 [46] Fu L and Kane C L 2007 Phys. Rev. B 76 045302 [47] Wada M, Murakami S, Freimuth F and Bihlmayer G 2011 Phys. Rev. B 83 121310 [48] Li X, H, Liu H, Jiang H, Wang F and Feng J 2014 Phys. Rev. B 90 165412 [49] Zhou T, Zhang J, Xue Y, Zhao B, Zhang H, Jiang H and Yang Z 2016 Phys. Rev. B 94 235449 [50] Ahn J, Kim D, Kim Y and Yang B J 2018 Phys. Rev. Lett. 121 106403 [51] Qi C, Ouyang L and Hu J 2018 2D Mater. 5 045012 [52] Fukui T and Hatsugai Y 2007 J. Phys. Soc. Jpn. 76 053702 [53] Xiao D, Yao Y, Feng W, Wen J, Zhu W, Chen X Q, Stocks G M and Zhang Z 2010 Phys. Rev. Lett. 105 096404 [54] Feng W, Wen J, Zhou J, Xiao D and Yao Y 2012 Comput. Phys. Commun. 183 1849 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|