Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 126801    DOI: 10.1088/1674-1056/ae0926
RAPID COMMUNICATION Prev   Next  

Unchanged top surface-state structures in three-dimensional topological insulator Sb2Te3 thin films in the presence of bottom-surface moiré potentials

Dezhi Song(宋德志)†, Fuyang Huang(黄扶旸)†, Jun Zhang(仉君)‡, and Ye-Ping Jiang(蒋烨平)§
Key Laboratory of Polar Materials and Devices, East China Normal University, Shanghai 200241, China
Abstract  The exertion of a long-period potential on two-dimensional (2D) systems leads to band-structure downfolding and the formation of mini flat bands, thereby providing a route for band engineering and enabling the realization of new physical phenomena through the tuning of electron-electron interactions. In this work, the effect of the moiré superlattice formed between the substrate and the bottom quintuple layer (QL) of 3- and 4-QL three-dimensional (3D) topological insulator Sb$_{2}$Te$_{3}$ thin films on the top surface states is investigated. The scanning tunneling spectra reveal that the bulk-like bands exhibit potential variations consistent with the moiré pattern. In contrast, the surface states display only minimal potential variations, resulting in the absence of mini-band formation in the top surface states. These surface states remain nearly unaffected, as confirmed by Landau-level spectroscopy and simulations. The results suggest distinct roles of the bottom-surface moiré potential on the bulk states and the top surface states in the weak coupling regime between the two surfaces.
Keywords:  scanning tunneling spectroscopy      topological surface states      heterostructure      moiré potential  
Received:  16 August 2025      Revised:  07 September 2025      Accepted manuscript online:  19 September 2025
PACS:  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  73.20.At (Surface states, band structure, electron density of states)  
  73.21.Cd (Superlattices)  
Fund: We acknowledge the supporting from the National Key R&D Program of China (Grant No. 2022YFA1403102) and the National Natural Science Foundation of China (Grant Nos. 12474478, 92065102, and 12574094).
Corresponding Authors:  Jun Zhang, Ye-Ping Jiang     E-mail:  zhangjun@ee.ecnu.edu.cn;ypjiang@clpm.ecnu.edu.cn
About author:  2025-126801-251421.pdf

Cite this article: 

Dezhi Song(宋德志), Fuyang Huang(黄扶旸), Jun Zhang(仉君), and Ye-Ping Jiang(蒋烨平) Unchanged top surface-state structures in three-dimensional topological insulator Sb2Te3 thin films in the presence of bottom-surface moiré potentials 2025 Chin. Phys. B 34 126801

[1] Miao W, Rashidi A and Dai X 2025 Phys. Rev. B 111 045113
[2] Guerci D,Wang J, Pixley J H and Cano J 2022 Phys. Rev. B 106 245417
[3] Dunbrack A and Cano J 2022 Phys. Rev. B 106 075142
[4] Cano J, Fang S, Pixley J H and Wilson J H 2021 Phys. Rev. B 103 155157
[5] Wang T, Yuan N F Q and Fu L 2021 Phys. Rev. X 11 021024
[6] Suri N, Wang C, Hunt B M and Xiao D 2023 Phys. Rev. B 108 155409
[7] Ghorashi S A A, Dunbrack A, Abouelkomsan A, Sun J, Du X and Cano J 2023 Phys. Rev. Lett. 130 196201
[8] Yang K, Xu Z, Feng Y, Schindler F, Xu Y, Bi Z, Bernevig B A, Tang P and Liu C X 2024 Nat. Commun. 15 2670
[9] Reifsnyder Hickey D, et al. 2020 Phys. Rev. Mater. 4 011201
[10] Liu B, Wagner T, Enzner S, Eck P, Kamp M, Sangiovanni G and Claessen R 2023 Nano Lett. 23 3189
[11] Schouteden K, Li Z, Chen T, Song F, Partoens B, Van Haesendonck C and Park K 2016 Sci. Rep. 6 20278
[12] Nakamura T, et al. 2024 Commun. Mater. 5 167
[13] Yin Y, et al. 2022 Nano Res. 15 1115
[14] Salvato M, et al. 2022 ACS Nano 16 13860
[15] Song C L, et al. 2010 Appl. Phys. Lett. 97 143118
[16] Zhou C, Song D, Jiang Y and Zhang J 2021 Chin. Phys. Lett. 38 057307
[17] Andersen T K, Wang S, Castell M R, Fong D D and Marks L D 2018 Surf. Sci. 675 36
[18] Zhang J, Cheng J, Ji S and Jiang Y P 2021 Chin. Phys. Lett. 38 077301
[19] Jiang Y, et al. 2012 Phys. Rev. Lett. 108 016401
[20] Zhang S F, Jiang H, Xie X C and Sun Q F 2014 Phys. Rev. B 89 155419
[21] Huang H, Chen M, Song D, Zhang J and Jiang Y P 2024 Phys. Rev. B 109 115414
[1] Exciton dynamics and random lasing in surface-passivated CdSe/CdSeS core/crown nanoplatelets
Huan Liu(刘欢), Puning Wang(王谱宁), and Rui Chen(陈锐). Chin. Phys. B, 2025, 34(9): 094201.
[2] Exciton and valley dynamics in WSe2/GaAs heterostructure
Xin Wei(魏鑫), Yuanhe Li(李元和), Wenkai Zhu(朱文凯), Rongkun Han(韩荣坤), Jianhua Zhao(赵建华), Kaiyou Wang(王开友), and Xinhui Zhang(张新惠). Chin. Phys. B, 2025, 34(9): 096701.
[3] Effect of interlayer interaction on magnon properties of vdW honeycomb heterostructures
Jun Shan(单俊), Lichuan Zhang(张礼川), Huasu Fu(付华宿), Yuee Xie(谢月娥), Yuriy Mokrousov, and Yuanping Chen(陈元平). Chin. Phys. B, 2025, 34(8): 087501.
[4] Impact of epitaxial structural parameters on two-dimensional hole gas properties in p-GaN/AlGaN/GaN heterostructures
Fuzhou Wen(文福洲), Qianshu Wu(吴千树), Jinwei Zhang(张津玮), Zhuoran Luo(罗卓然), Senyuan Xu(许森源), Hao Jiang(江灏), and Yang Liu(刘扬). Chin. Phys. B, 2025, 34(7): 077105.
[5] Ultrafast electron transport in 2D van der Waals heterostructures Bi2Te3/Fe4GeTe2 probed by terahertz spectroscopy
Hui-Xiang Hong(洪晖祥), Yun Sun(孙芸), Jing Li(李竞), Jing-Yi Peng(彭静宜), Hui-Ping Zhang(张慧萍), Hong-Guang Li(李宏光), Shao-Hui Wu(吴少晖), Tian-Xiao Nie(聂天晓), Yan Peng(彭滟), and Zuan-Ming Jin(金钻明). Chin. Phys. B, 2025, 34(7): 077304.
[6] Modulating electronic properties of carbon nanotube via constructing one-dimensional vdW heterostructures
Wenqi Lv(吕雯祺), Weili Li(李伟立), Wei Ji(季威), and Yanning Zhang(张妍宁). Chin. Phys. B, 2025, 34(6): 067303.
[7] Impact of p-GaN thickness on the transport properties of two-dimensional hole gases in a GaN/AlGaN/GaN heterostructure
Pengfei Shao(邵鹏飞), Yifan Cheng (成毅凡), Yu Liu(柳裕), Qi Yao(姚齐), Zanjiang Qiao(乔赞江), Yanghu Peng (彭扬虎), Qin Cai(蔡青), Tao Tao(陶涛), Zili Xie(谢自力), Dunjun Chen(陈敦军), Bin Liu(刘斌), Rong Zhang(张荣), and Ke Wang(王科). Chin. Phys. B, 2025, 34(11): 117301.
[8] A convenient ultrasonic path for van der Waals heterostructure construction: Study on MoS2/graphene as an example
Wen Zhang(张文), Mingyang Gao(高铭阳), Jun Guo(郭俊), Licun Fu(付立存), Ling Liu(刘玲), Jing Wang(王京), and Teng Ma(马腾). Chin. Phys. B, 2025, 34(11): 117304.
[9] Epitaxial growth of Bi nanowires on Pb-√77 × √3 surface
Siyu Huo(霍思宇), Jieying Li(李洁莹), Yuzhou Liu(刘宇舟), Desheng Cai(蔡德胜), Yitong Gu(谷易通), Haoen Chi(迟浩恩), Wenhui Pang(庞文慧), Gan Yu(于淦), Xiaoying Shi(史晓影), Wenguang Zhu(朱文光), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2025, 34(10): 106801.
[10] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌). Chin. Phys. B, 2024, 33(8): 087102.
[11] Topological superconductors with spin-triplet pairings and Majorana Fermi arcs
Shi Huang(黄石) and Xi Luo(罗熙). Chin. Phys. B, 2024, 33(8): 087301.
[12] Field induced Chern insulating states in twisted monolayer-bilayer graphene
Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Chin. Phys. B, 2024, 33(6): 067301.
[13] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[14] Improving the electrical performances of InSe transistors by interface engineering
Tianjun Cao(曹天俊), Song Hao(郝松), Chenchen Wu(吴晨晨), Chen Pan(潘晨), Yudi Dai(戴玉頔), Bin Cheng(程斌), Shi-Jun Liang(梁世军), and Feng Miao(缪峰). Chin. Phys. B, 2024, 33(4): 047302.
[15] Spin transport characteristics modulated by the GeBi interlayer in Y3Fe5O12/GeBi/Pt heterostructures
Mingming Li(李明明), Lei Zhang(张磊), Lichuan Jin(金立川), and Haizhong Guo(郭海中). Chin. Phys. B, 2024, 33(2): 027201.
No Suggested Reading articles found!