| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Microstructural evolution and magnetocaloric properties of off-stoichiometric La1.2Fe11.6Si1.4 alloys with interstitial C atoms |
| Huiyan Zhang(张慧燕)1,2,†, Ye Zhu(朱叶)2, Fucheng Zhu(朱福成)2, Yang Xu(许旸)2, Yunbo Chen(陈云博)2, Hailing Li(李海玲)1,2, Weihua Gu(顾未华)1,2, Zhiyuan Liu(刘志愿)1,2, Weihuo Li(李维火)2,3, and Ailin Xia(夏爱林)1,2 |
1 Advanced Ceramics Research Center, School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002, China; 2 School of Material Science and Engineering, Anhui University of Technology, Maanshan 243002, China; 3 Wuhu Technology and Innovation Research Institute, Anhui University of Technology, Wuhu 241003, China |
|
|
|
|
Abstract This study investigated the effects of interstitial carbon doping on the microstructural and magnetocaloric properties of off-stoichiometric La$_{1.2}$Fe$_{11.6}$Si$_{1.4}$C$_{x}$ ($x = 0$, 0.25, 0.5, 0.75, 1) alloys. The alloys were prepared by melt-spinning following vacuum arc-melting. For the as-prepared and annealed samples, the carbon existed in the La$_{2}$Fe$_{2}$Si$_{2}$C and NaZn$_{13}$-type La(Fe, Si)$_{13}$ (denoted by 1:13) phases, respectively. During the annealing process, the C atoms inhibited the diffusion reaction and depressed the generation of 1:13 phase, reducing mass fraction of the 1:13 phase in annealed La$_{1.2}$Fe$_{11.6}$Si$_{1.4}$C$_{x} $ compounds. The introduction of carbon resulted in lattice expansion and increased the Curie temperature ($T_{\rm C}$) from 192 K to 273 K with $x = 0.5$. The first-order magnetic transition was gradually transformed into the second-order magnetic transition with increasing carbon content, which induced the significant reduction of thermal and magnetic hysteresis, as well as the maximum magnetic entropy change and adiabatic temperature change vary from 18.92 J/(kg$\cdot$K) to 4.60 J/(kg$\cdot$K) and from 4.9 K to 2.2 K under an applied field change of 0-2 T. The results demonstrate that interstitial carbon doping is an effective strategy to improve the magnetocaloric performance of La(Fe,Si)$_{13}$ alloys.
|
Received: 20 January 2025
Revised: 31 March 2025
Accepted manuscript online: 21 April 2025
|
|
PACS:
|
82.30.Nr
|
(Association, addition, insertion, cluster formation)
|
| |
75.47.Np
|
(Metals and alloys)
|
| |
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
| |
75.30.Kz
|
(Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52272263), the University Synergy Innovation Program of Anhui Province, China (Grant No. GXXT-2022-008), the University Natural Science Research Project of Anhui Province, China (Grant No. 2024AH050145), the Youth Foundation of Anhui University of Technology (Grant No. QZ202303), and the National Innovation and Entrepreneurship Training Program for College Students (Grant No. 202310360018). |
Corresponding Authors:
Huiyan Zhang
E-mail: hyzh2017@ahut.edu.cn
|
Cite this article:
Huiyan Zhang(张慧燕), Ye Zhu(朱叶), Fucheng Zhu(朱福成), Yang Xu(许旸), Yunbo Chen(陈云博), Hailing Li(李海玲), Weihua Gu(顾未华), Zhiyuan Liu(刘志愿), Weihuo Li(李维火), and Ailin Xia(夏爱林) Microstructural evolution and magnetocaloric properties of off-stoichiometric La1.2Fe11.6Si1.4 alloys with interstitial C atoms 2025 Chin. Phys. B 34 088202
|
[1] Hou X, Lampen-Kelley P, Xue Y, Liu C, Xu H, Han N, Ma C, Srikanth H and Phan M H 2015 J. Alloys Compd. 646 503 [2] Franco V, Blazquez J S, Ipus J J, Law J Y, Moreno-Ramirez L M and Conde A 2018 Prog. Mater. Sci. 93 112 [3] Lyubina J 2017 J. Phys. D: Appl. Phys. 50 053002 [4] Balli M, Jandl S, Fournier P and Kedous-Lebouc A 2017 Appl. Phys. Rev. 4 021305 [5] Brown G V 1976 J. Appl. Phys. 47 3673 [6] Pecharsky V K and Gschneidner K A 1997 J. Magn. Magn. Mater. 167 L179 [7] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302 [8] Li Z, Yang J, Li D, Li Z, Yang B, Yan H, Sánchez-Valdés C F, Llamazares J L S, Zhang Y, Esling C, Zhao X and Zuo L 2019 Adv. Electron. Mater. 5 1800845 [9] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675 [10] Fan WB, Hou Y H, Ge X J, Huang Y L, Luo J M and Zhong Z C 2018 J. Phys. D: Appl. Phys. 51 115003 [11] Zhang H, Hu F, Sun J and Shen B 2013 Sci. China- Phys. Mech. Astron. 56 2302 [12] Gutfleisch O, Yan A and Müller K H 2005 J. Appl. Phys. 97 10 [13] Chen X, Chen Y and Tang Y 2012 Bull. Mater. Sci. 35 175 [14] Zhang H, Shen B G, Xu Z Y, Zheng X Q, Shen J, Hu F X, Sun J R and Long Y 2012 J. Appl. Phys. 111 07A909 [15] Chen X, Chen Y and Tang Y 2011 J. Alloys Compd. 509 2864 [16] Zheng H, Tang Y, Chen Y, Wu J, Wang H, Xue X, Wang J and Pang W 2015 J. Alloys Compd. 646 124 [17] Barcza A, Katter M, Zellmann V, Russek S, Jacobs S and Zimm C 2011 IEEE T. Magn. 47 3391 [18] Dai Y, Li Y, Xu Z, Luo Z, Han K, Zhai Q and Zheng H 2018 J. Alloys Compd. 765 538 [19] Zhang H, Zhang X, Tan J, Yan J, Shi H, Zhang J, Wei H, Li H, Li W and Xia A 2023 J. Alloys Compd. 953 170114 [20] Chen Y F, Wang F, Shen B G, Wang G J and Sun J R 2003 J. Appl. Phys. 93 1323 [21] Liu X B, Liu X D, Altounian Z and Tu G H 2005 J. Alloys Compd. 397 120 [22] Lyubina J, Gutfleisch O, Kuz’min M D and Richter M 2009 J. Magn. Magn. Mater. 321 3571 [23] Liu J, He C, Zhang M X and Yan A R 2016 Acta Mater. 118 44 [24] Li S, Huang R, Zhao Y, Wang W and Li L 2015 Phys. Chem. Chem. Phys. 17 30999 [25] Song H, Hu Y, Zhang J, Fang J and Hou X 2022 Materials 15 343 [26] Rodríguez-Carvajal J 1993 Physica B 192 55 [27] Hüfken T, Witte A M and Jeitschko W 1998 J. Alloys Compd. 266 158 [28] Boer F R de, Boom R, Mattens W C M, Miedema A R and Niessen A K 1988 Cohesion in Metals: Transition Metal Alloys, 2nd ed., January 1, 1989 (Amsterdam: North-Holland) [29] Song W X and Zhao S J 2015 J. Chem. Phys. 142 144504 [30] Fu S, Long Y, Sun Y and Hu J 2013 Intermetallics 39 79 [31] Song B Y, Han Y Q, Cheng J, Gao L, Jin X, Sun Z B and Huang J H 2024 J. Alloys Compd. 990 174398 [32] Liu J, Krautz M, Skokov K,Woodcock T G and Gutfleisch O 2011 Acta Mater. 59 3602 [33] Zhang D, Wu Z, Li Y and Wang R 2022 Coatings 12 534 [34] Chen Y F, Wang F, Shen B G, Sun J R, Wang G J, Hu F X and Cheng Z H 2003 J. Appl. Phys. 93 6981 [35] Fujita A, Fujieda S, Fukamichi K, Mitamura H and Goto T 2001 Phys. Rev. B 65 014410 [36] Fujita A, Fujieda S, Hasegawa Y and Fukamichi K 2003 Phys. Rev. B 67 104416 [37] Chen Y F, Wang F, Shen B G, Hu F X, Sun J R, Wang G J and Cheng Z H 2003 J. Phys.: Condens. Matter 15 L161 [38] Phejar M, Paul-Boncour V and Bessais L 2010 Intermetallics 18 2301 [39] Hashimoto T, Numasawa T, ShinoMand Okada T 1981 Cryogenics 21 647 [40] McMichael R D, Ritter J J and Shull R D 1993 J. Appl. Phys. 73 6946 [41] Shamba P, Debnath J C, Zeng R, Wang J L, Campbell S J, Kennedy S J and Dou S X 2011 J. Appl. Phys. 109 07A940 [42] Lin Z, Li S, Liu M, Duh J G, Peng K and Mao X 2010 J. Alloys Compd. 489 1 [43] Chen X, Chen Y and Tang Y 2014 Solid State Commun. 186 56 [44] Teixeira C S, Krautz M, Moore J D, Skokov K,Wendhausen P A P and Gutfleisch O 2012 J. Appl. Phys. 111 07A927 [45] Law J Y, Franco V, Moreno-Ramírez L M, Conde A, Karpenkov D Y, Radulov I, Skokov K P and Gutfleisch O 2018 Nat. Commun. 9 2680 [46] Debnath J C, Zeng R, Kim J H and Dou S X 2011 J. Magn. Magn. Mater. 323 138 [47] Nadig P R, Murari M S and Daivajna M D 2024 Phys. Chem. Chem. Phys. 26 5237 [48] Gottschall T, Skokov K P, Fries M, Taubel A, Radulov I, Scheibel F, Benke D, Riegg S and Gutfleisch O 2019 Adv. Energy Mater. 9 1901322 [49] Engelbrecht K and Bahl C R H 2010 J. Appl. Phys. 108 123918 [50] Kavitaa S, Alagusoundarya M, Ramakrishna V V, Suresh V, Bhatt P, Srimathi P, Archana R, Kar D, Thomas T and Gopalan R 2022 J. Alloys Compd. 895 162597 [51] Lee A Y, Kang K H, Chung K C and Kim J W 2024 Intermetallics 173 108408 [52] Abdulkadirova N Z, Gamzatov A G, Kamilov K I, Kadirbardeev A T, Aliev A M, Popov Y F, Vorob’ev G P and Gebara P 2022 J. Alloys Compd. 929 167348 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|