Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 107502    DOI: 10.1088/1674-1056/acd925
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Anomalous Hall effect in ferromagnetic LaCo2As2 and ferrimagnetic NdCo2As2

Yu-Qing Huang(黄雨晴)1,2, Peng-Yu Zheng(郑鹏宇)3, Rui Liu(刘瑞)3, Xi-Tong Xu(许锡童)1, Zi-Yang Wu(吴紫阳)4, Chao Dong(董超)4, Jun-Feng Wang(王俊峰)4, Zhi-Ping Yin(殷志平)3, and Shuang Jia(贾爽)1,2,5,†
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100081, China;
2 Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China;
3 Department of Physics and Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China;
4 Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China;
5 Kunshan Innovation Institute of Nanjing University, Kunshan 215347, China
Abstract  We conducted a comparative study of the magnetic and transport properties of single-crystalline LaCo2As2 and NdCo2As2. LaCo2As2 is a soft metallic ferromagnet which exhibits purely intrinsic anomalous Hall effect (AHE) due to Co-3d electrons. With Nd-4f electronic magnetism, ferrimagnetic NdCo2As2 manifests pronounced sign reversal and multiple hysteresis loops in temperature- and field-dependent magnetization, Hall resistivity, and magnetoresistance, due to complicated magnetic structural changes. We reveal that the AHE for NdCo2As2 is stemming from the Co sub-lattice and deduce its phase diagram which includes magnetic compensation and two meta-magnetic phase transitions. The sensitivity of the Hall effect on the details of the magnetic structures in ferrimagnetic NdCo2As2 provides a unique opportunity to explore the magnetic interaction between 4f and 3d electrons and its impact on the electronic structure.
Keywords:  anomalous Hall effect      ferrimagnetism      magnetic compensation      meta-magnetic transitions  
Received:  14 April 2023      Revised:  26 May 2023      Accepted manuscript online:  26 May 2023
PACS:  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  75.50.Gg (Ferrimagnetics)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1502502), the National Natural Science Foundation of China (Grant Nos. 12141002 and 12225401), the Fund from Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory. The work in the high magnetic field lad was supported by the Interdisciplinary Program of Wuhan National High Magnetic Field Center (Grant No. WHMFC202123), Huazhong University of Science and Technology. Z. Y. was supported by the National Natural Science Foundation of China (Grant Nos. 12074041 and 11674030), the Foundation of the National Key Laboratory of Shock Wave and Detonation Physics (Grant No. 6142A03191005), the National Key Research and Development Program of China (Grant No. 2016YFA0302300), and the startup funding of Beijing Normal University.
Corresponding Authors:  Shuang Jia     E-mail:  gwljiashuang@pku.edu.cn

Cite this article: 

Yu-Qing Huang(黄雨晴), Peng-Yu Zheng(郑鹏宇), Rui Liu(刘瑞), Xi-Tong Xu(许锡童), Zi-Yang Wu(吴紫阳), Chao Dong(董超), Jun-Feng Wang(王俊峰), Zhi-Ping Yin(殷志平), and Shuang Jia(贾爽) Anomalous Hall effect in ferromagnetic LaCo2As2 and ferrimagnetic NdCo2As2 2023 Chin. Phys. B 32 107502

[1] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539
[2] Karplus R and Luttinger J M 1954 Phys. Rev. 95 1154
[3] Smit J 1955 Physica 21 877
[4] Smit J 1958 Physica 24 39
[5] Berger L 1970 Phys. Rev. B 2 4559
[6] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[7] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212
[8] Nayak A K, Fischer J E, Sun Y, Yan B, Karel J, Komarek A C, Shekhar C, Kumar N, Schnelle W, Kübler J, Felser C and Parkin S S 2016 Sci. Adv. 2 e1501870
[9] Smejkal L, MacDonald A H, Sinova J, Nakatsuji S and Jungwirth T 2022 Nat. Rev. Mater. 7 482
[10] Néel L 1948 Ann. Phys. (Paris) 3 137
[11] Pauthenet R 1958 J. Appl. Phys. 29 253
[12] Clark A E and Callen E 1968 J. Appl. Phys. 39 5972
[13] McGuire T R, Gambino R J and Taylor R C 1977 J. Appl. Phys. 48 2965
[14] Malmhäll R 1983 J. Appl. Phys. 54 5128
[15] Stanciu C D, Kimel A V, Hansteen F, Tsukamoto A, Itoh A, Kirilyuk A and Rasing T 2006 Phys. Rev. B 73 220402
[16] Finley J and Liu L 2016 Phys. Rev. Appl. 6 054001
[17] Mishra R, Yu J, Qiu X, Motapothula M, Venkatesan T and Yang H 2017 Phys. Rev. Lett. 118 167201
[18] Kim K J, Kim S K, Hirata Y, Oh S H, Tono T, Kim D H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K and Ono T 2017 Nat. Mater. 16 1187
[19] Jungwirth T, Marti X, Wadley P and Wunderlich J 2016 Nat. Nanotechnol. 11 231
[20] Becker J, Tsukamoto A, Kirilyuk A, Maan J C, Rasing T, Christianen P C M and Kimel A V 2017 Phys. Rev. Lett. 118 117203
[21] Bhatt R C, Ye L X, Hai N T, Wu J C and Wu T H 2021 J. Magn. Magn. Mater. 537 168196
[22] Okuno T, Kim K J, Tono T, Kim S, Moriyama T, Yoshikawa H, Tsukamoto A and Ono T 2016 Appl. Phys. Express 9 073001
[23] Xu Y, Chen D, Tong S, Chen H, Qiu X, Wei D and Zhao J 2020 Phys. Rev. Appl. 14 034064
[24] Davydova M D, Skirdkov P N, Zvezdin K A, Wu J C, Ciou S Z, Chiou Y R, Ye L X, Wu T H, Bhatt R C, Kimel A V and Zvezdin A K 2020 Phys. Rev. Appl. 13 034053
[25] Park J, Hirata Y, Kang J H, Lee S, Kim S, Van Phuoc C, Jeong J R, Park J, Park S Y, Jo Y, Tsukamoto A, Ono T, Kim S K and Kim K J 2021 Phys. Rev. B 103 014421
[26] Shi W, Muechler L, Manna K, Zhang Y, Koepernik K, Car R, van den B J, Felser C and Sun Y 2018 Phys. Rev. B 97 060406
[27] Park M, Han G and Rhim S H 2022 Phys. Rev. Res. 4 013215
[28] Yin J X, Ma W, Cochran T A, et al. 2020 Nature 583 533
[29] Ma W, Xu X, Yin J X, Yang H, Zhou H, Cheng Z J, Huang Y, Qu Z, Wang F, Hasan M Z and Jia S 2021 Phys. Rev. Lett. 126 246602
[30] Marchand R and Jeitschko W 1978 J. Solid State Chem. 24 351
[31] Jia S, Jiramongkolchai P, Suchomel M R, Toby B H, Checkelsky J G, Ong N P and Cava R J 2011 Nat. Phys. 7 207
[32] Lai Y, Chan J Y and Baumbach R E 2022 Sci. Adv. 8 eabp8264
[33] Tan X, Tener Z P and Shatruk M 2018 Acc. Chem. Res. 51 230
[34] Thompson C M, Tan X, Kovnir K, Garlea V O, Gippius A A, Yaroslavtsev A A, Menushenkov A P, Chernikov R V, Büttgen N, Krätschmer W, Zubavichus Y V and Shatruk M 2014 Chem. Mater. 26 3825
[35] Tan X 2016 Synthesis and Investigation of Ternary Intermetallics as Itinerant Magnets, Ph. D. Dissertation (The Florida State University)
[36] Thompson C M 2012 Magneto-Structural Correlations in Rare Earth-Cobalt Pnictides, Ph. D. Dissertation (The Florida State University)
[37] Menushenkov A P, Yaroslavtsev A A, Geondzhian A Y, Chernikov R V, Zubavichus Y V, Tan X and Shatruk M 2015 J. Supercond. Nov. Magn. 28 995
[38] Cheng Z J, Huang Y, Zheng P, et al. 2023 arXiv preprint arXiv: 2302.12113
[39] Thompson C M, Kovnir K, Eveland S, Herring M J and Shatruk M 2011 Chem. Commun. 47 5563
[40] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[41] Pizzi G, Vitale V, Arita R, et al. 2020 J. Phys.: Condens. Matter 32 165902
[42] Wu Q, Zhang S, Song H F, Troyer M and Soluyanov A A 2018 Comput. Phys. Commun. 224 405
[43] Haule K, Yee C H and Kim K 2010 Phys. Rev. B 81 195107
[44] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865
[45] Blaha P, Schwarz K, Madsen G K, Kvasnicka D and Luitz J 2001 An augmented plane wave+local orbitals program for calculating crystal properties 60 1
[46] Mao H and Yin Z 2018 Phys. Rev. B 98 115128
[47] Haule K 2015 Phys. Rev. Lett. 115 196403
[48] Haule K 2007 Phys. Rev. B 75 155113
[49] Werner P, Comanac A, De'Medici L, Troyer M and Millis A J 2006 Phys. Rev. Lett. 97 076405
[50] Marrows C H and Dalton B C 2004 Phys. Rev. Lett. 92 097206
[51] Zeng C, Yao Y, Niu Q and Weitering H H 2006 Phys. Rev. Lett. 96 037204
[52] Zhu T 2014 Chin. Phys. B 23 047504
[53] Ding J J, Wu S B, Yang X F and Zhu T 2015 Chin. Phys. B 24 027201
[54] Zhu L J, Nie S H and Zhao J H 2016 Phys. Rev. B 93 195112
[55] Hazra B K, Kaul S N, Srinath S, Raja M M, Rawat R and Lakhani A 2017 Phys. Rev. B 96 184434
[56] Hou D, Su G, Tian Y, Jin X, Yang S A and Niu Q 2015 Phys. Rev. Lett. 114 217203
[57] Yue D and Jin X 2017 J. Phys. Soc. Jpn. 86 011006
[58] Wang G, Sun Z, Si X and Jia S 2020 Chin. Phys. B 29 077503
[59] Zhou H, Chang G, Wang G, Gui X, Xu X, Yin J X, Guguchia Z, Zhang S S, Chang T R, Lin H, Xie W, Hasan M Z and Jia S 2020 Phys. Rev. B 101 125121
[1] Doping tuned anomalous Hall effect in the van der Waals magnetic topological phases Mn(Sb1-xBix)4Te7
Xin Zhang(张鑫), Zhicheng Jiang(江志诚), Jian Yuan(袁健), Xiaofei Hou(侯骁飞), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强), Zhengtai Liu(刘正太), Wei Xia(夏威), Zhenhai Yu(于振海), Dawei Shen(沈大伟), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(9): 097201.
[2] Magnetic and electronic properties of bulk and two-dimensional FeBi2Te4: A first-principles study
Qianqian Wang(王倩倩), Jianzhou Zhao(赵建洲), Weikang Wu(吴维康), Yinning Zhou(周胤宁), Qile Li, Mark T. Edmonds, and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2023, 32(8): 087506.
[3] Topological magnetotransport and electrical switching of sputtered antiferromagnetic Ir20Mn80
Danrong Xiong(熊丹荣), Yuhao Jiang(蒋宇昊), Daoqian Zhu(朱道乾), Ao Du(杜奥), Zongxia Guo(郭宗夏), Shiyang Lu(卢世阳), Chunxu Wang(王春旭), Qingtao Xia(夏清涛), Dapeng Zhu(朱大鹏), and Weisheng Zhao(赵巍胜). Chin. Phys. B, 2023, 32(5): 057501.
[4] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[5] Low-damage photolithography for magnetically doped (Bi,Sb)2Te3 quantum anomalous Hall thin films
Zhiting Gao(高志廷), Minghua Guo(郭明华), Zichen Lian(连梓臣), Yaoxin Li(李耀鑫), Yunhe Bai(白云鹤), Xiao Feng(冯硝), Ke He(何珂), Yayu Wang(王亚愚), Chang Liu(刘畅), and Jinsong Zhang(张金松). Chin. Phys. B, 2023, 32(11): 117303.
[6] Nonmonotonic anomalous Hall effect and anisotropic magnetoresistance in SrRuO3/PbZr0.52Ti0.48O3 heterostructures
Zhen-Li Wang(王振礼), Chao-Yang Kang(康朝阳), Cai-Hong Jia(贾彩虹), Hai-Zhong Guo(郭海中), and Wei-Feng Zhang(张伟风). Chin. Phys. B, 2023, 32(10): 107303.
[7] Current carrying states in the disordered quantum anomalous Hall effect
Yi-Ming Dai(戴镒明), Si-Si Wang(王思思), Yan Yu(禹言), Ji-Huan Guan(关济寰), Hui-Hui Wang(王慧慧), and Yan-Yang Zhang(张艳阳). Chin. Phys. B, 2022, 31(9): 097302.
[8] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
[9] Manipulation of intrinsic quantum anomalous Hall effect in two-dimensional MoYN2CSCl MXene
Yezhu Lv(吕叶竹), Peiji Wang(王培吉), and Changwen Zhang(张昌文). Chin. Phys. B, 2022, 31(12): 127303.
[10] Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(10): 107304.
[11] Pressure tuning of the anomalous Hall effect in the kagome superconductor CsV3Sb5
Fang-Hang Yu(喻芳航), Xi-Kai Wen(温茜凯), Zhi-Gang Gui(桂智刚), Tao Wu(吴涛), Zhenyu Wang(王震宇), Zi-Ji Xiang(项子霁), Jianjun Ying(应剑俊), and Xianhui Chen(陈仙辉). Chin. Phys. B, 2022, 31(1): 017405.
[12] Anomalous Hall effect in ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn
Guangqiang Wang(王光强), Zhanghao Sun(孙彰昊), Xinyu Si(司鑫宇), Shuang Jia(贾爽). Chin. Phys. B, 2020, 29(7): 077503.
[13] Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal
Zedong Li(李泽东) and Z F Wang(王征飞)†. Chin. Phys. B, 2020, 29(10): 107101.
[14] Magnetic characterization of a thin Co2MnSi/L10–MnGa synthetic antiferromagnetic bilayer prepared by MBE
Shan Li(黎姗), Jun Lu(鲁军)†, Si-Wei Mao(毛思玮), Da-Hai Wei(魏大海), and Jian-Hua Zhao(赵建华). Chin. Phys. B, 2020, 29(10): 107501.
[15] AlOx/LiF composite protection layer for Cr-doped (Bi, Sb)2Te3 quantum anomalous Hall films
Yunbo Ou(欧云波), Yang Feng(冯洋), Xiao Feng(冯硝), Zhenqi Hao(郝镇齐), Liguo Zhang(张立果), Chang Liu(刘畅), Yayu Wang(王亚愚), Ke He(何珂), Xucun Ma(马旭村), Qikun Xue(薛其坤). Chin. Phys. B, 2016, 25(8): 087307.
No Suggested Reading articles found!