Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 067504    DOI: 10.1088/1674-1056/ac904a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic ordering induced magnetodielectric effect in Ho2Cu2O5 and Yb2Cu2O5

Hao Jin(金昊)1, Shuai Huang(黄帅)1,2,†, Kai-Qi Wan(万凯奇)1, Chang-Ming Zhu(朱长明)2, Hai-Ou Wang(王海欧)1, Kun-Peng Su(苏昆朋)1, and De-Xuan Huo(霍德璇)1,‡
1 Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Institute of Material Physics, Hangzhou Dianzi University, Hangzhou 310018, China;
2 Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology, Guangxi Normal University, Guilin 541004, China
Abstract  Materials with strongly coupled magnetic and electronic degrees of freedom provide new possibilities for practical applications. In this paper, we have investigated the structure, magnetic property, and magnetodielectric (MD) effect in Ho$_{2}$Cu$_{2}$O$_{5}$ and Yb$_{2}$Cu$_{2}$O$_{5}$ polycrystalline samples, which possess a non-centrosymmetric polar structure with space group $Pna$2$_{1}$. In Ho$_{2}$Cu$_{2}$O$_{5}$, Ho$^{3+}$ and Cu$^{2+}$ sublattices order simultaneously, exhibiting a typical paramagnetic to antiferromagnetic transition at 13.1 K. While for Yb$_{2}$Cu$_{2}$O$_{5}$, two magnetic transitions which originate from the orderings of Yb$^{3+}$ (7.8 K) and Cu$^{2+}$ (13.5 K) sublattices are observed. A magnetic field induced metamagnetic transition is obtained in these two cuprates below Néel temperature ($T_{\rm N}$). By means of dielectric measurement, distinct MD effect is demonstrated by the dielectric anomaly at $T_{\rm N}$. Meanwhile, the MD effect is found to be directly related to the metamagnetic transition. Due to the specific spin configuration and different spin evolution in the magnetic field, a positive MD effect is formed in Ho$_{2}$Cu$_{2}$O$_{5}$, and a negative one is observed in Yb$_{2}$Cu$_{2}$O$_{5}$. The spontaneous dielectric anomaly at $T_{\rm N}$ is regarded as arising from the shifts in optical phonon frequencies, and the magnetoelectric coupling is used to interpret the magnetic field induced MD effect. Moreover, an $H$-$T$ phase diagram is constructed for Ho$_{2}$Cu$_{2}$O$_{5}$ and Yb$_{2}$Cu$_{2}$O$_{5}$ based on the results of isothermal magnetic and dielectric hysteresis loops.
Keywords:  magnetic ordering      metamagnetic transition      magnetodielectric effect  
Received:  24 May 2022      Revised:  02 September 2022      Accepted manuscript online:  08 September 2022
PACS:  75.47.Lx (Magnetic oxides)  
  75.85.+t (Magnetoelectric effects, multiferroics)  
  77.22.-d (Dielectric properties of solids and liquids)  
  61.05.cp (X-ray diffraction)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11704091), the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology (Grant No. NLK2021-10), and the Open Project of Key Laboratory of Novel Materials for Sensor of Zhejiang Province, China (Grant No. ZJKLNMS2021010).
Corresponding Authors:  Shuai Huang, De-Xuan Huo     E-mail:  huangshuai@hdu.edu.cn;dxhuo@hdu.edu.cn

Cite this article: 

Hao Jin(金昊), Shuai Huang(黄帅), Kai-Qi Wan(万凯奇), Chang-Ming Zhu(朱长明),Hai-Ou Wang(王海欧), Kun-Peng Su(苏昆朋), and De-Xuan Huo(霍德璇) Magnetic ordering induced magnetodielectric effect in Ho2Cu2O5 and Yb2Cu2O5 2023 Chin. Phys. B 32 067504

[1] Ravi S P N, Mishra S and Athinarayanan S 2020 APL Mater. 8 040906
[2] Ramesh R and Martin L W2021 Riv. Nuovo Cimento 44 251
[3] Kagawa F, Mochizuki M, Onose Y, Murakawa H, Kaneko Y, Furukawa N and Tokura Y 2009 Phys. Rev. Lett. 102 057604
[4] Yin L H, Zou Y M, Yang J, Dai J M, Song W H, Zhu X B and Sun Y P 2016 Appl. Phys. Lett. 109 032905
[5] Subramanian M A, He T, Chen J, Rogado N S, Calvarese T G and Sleight A W 2006 Adv. Mater. 18 1737
[6] Rogado N S, Li J, Sleight A W and Subramanian M A 2005 Adv. Mater. 17 2225
[7] Zhang X, Zhao Y G, Cui Y F, Ye L D, Wang J W, Zhang S, Zhang H Y and Zhu M H 2012 Appl. Phys. Lett. 100 032901
[8] Chandrakanta K, Jena R, Pal P, Abdullah M F, Mohapatra S R, Kaushik S D and Singh A K 2020 J. Mater. Sci.: Mater. Electron. 31 15875
[9] Adem U, Nénert G, Arramel, Mufti N, Blake G R and Palstra T T M 2009 Eur. Phys. J. B 71 393
[10] Samara G A and Scott J F 1977 Solid State Commun. 21 167
[11] Troć R, Klamut J, Bukowski Z, Horyń R and Stępień-Damm J 1989 Physica B 154 189
[12] Kazei Z A, Kolmakova N P, Levitin R Z, Mill B V, Moshchalkov V V, Orlov V N, Snegirev V V and Zoubkova J 1990 J. Magn. Magn. Mater. 86 124
[13] arcía-Muñoz J L G, Rodríguez-Carvajal J, Obradors X, Vallet-Regí M, González-Calbet J and Parras M 1991 Phys. Rev. B 44 4716
[14] García-Muñoz J L and Rodríguez-Carvajal J 1995 J. Solid State Chem. 115 324
[15] Matsuoka Y, Nishimura Y, Mitsudo S, Nojiri H, Komatsu H, Motokawa M, Kakurai K, Nakajima K, Karasawa Y and Niimura N1998 J. Magn. Magn. Mater. 177 729
[16] Cheong S W, Thompson J D, Fisk Z, Martin K A K and Garcia E 1988 Phys. Rev. B 38 7013
[17] García-Munoz J L, Obradors X and Rodríguez-Carvajal J 1995 Phys. Rev. B 51 6594
[18] Li L, Wang J, Su K, Huo D and Qi Y 2016 J. Alloys Compd. 658 500
[19] Lebech B, Matsuoka Y, Kakurai K and Motokawa M 2005 Prog. Theor. Phys. Supp. 159 222
[20] Golosovsky I V, Plakhty V P, Harchenkov V P, Sharigin S V and Schweizer J 1994 J. Magn. Magn. Mater. 129 233
[21] Banerjee A, Sannigrahi J, Giri S and Majumdar S 2017 J. Phys.: Condens. Matter. 29 115803
[22] Murasik A, Fischer P, Troć R and Bukowski Z 1990 Solid State Commun. 75 785
[23] Huang S, Jin H, Wan K Q, Wang H O, Su K P, Yang D X, Yang L and Huo D X 2022 J. Appl. Phys. 131 054102
[24] Denisov V M, Denisova L T, Chumilina L G and Kirik S D 2013 Phys. Solid State 55 2023
[25] Guo R, You J H, Han F, Li C Y, Zheng G Y, Xiao W C and Liu X W 2017 Appl. Surf. Sci. 396 1076
[26] Aldemir D A2019 J Mater. Sci. 30 19457
[27] Sundaresan A, Ghosh K, Ramakrishnan S, Gupta L C, Chandra G, Sharon M and Vijayaraghavan R 1994 Phys. Rev. B 49 6388
[28] Khanh N D, Abe N, Matsuura K, Sagayama H, Tokunaga Y and Arima T 2019 Appl. Phys. Lett. 114 102905
[29] Lawes G, Ramirez A P, Varma C M and Subramanian M A 2003 Phys. Rev. Lett. 91 257208
[30] Zhou J P, Zhang Y X, Liu Q and Liu P 2014 Acta Mater. 76 355
[31] Alrub A M 2019 J. Appl. Phys. 126 154102
[32] Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M and Tokura Y 2003 Phys. Rev. B 67 180401
[33] Lawes G, Kimura T, Varma C M, Subramanian M A, Rogado N, Cava R J and Ramirez A P 2009 Prog. Solid State Chem. 37 40
[34] Catalan G 2006 Appl. Phys. Lett. 88 102902
[1] Lattice thermal conductivity switching via structural phase transition in ferromagnetic VI3
Chao Wu(吴超) and Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(5): 056502.
[2] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[3] Low temperature ferromagnetism in CaCu3Ti4O12
Song Yang(杨松), Xiao-Jing Luo(罗晓婧), Zhi-Ming Shen(申志明), Tian Gao(高湉), Yong-Sheng Liu(刘永生), and Shao-Long Tang(唐少龙). Chin. Phys. B, 2021, 30(9): 098103.
[4] Magnetocrystalline anisotropy and dynamic spin reorientation of half-doped Nd0.5Pr0.5FeO3 single crystal
Haotian Zhai(翟浩天), Tian Gao(高湉), Xu Zheng(郑旭), Jiali Li(李佳丽), Bin Chen(陈斌), Hongliang Dong(董洪亮), Zhiqiang Chen(陈志强), Gang Zhao(赵钢), Shixun Cao(曹世勋), Chuanbing Cai(蔡传兵), and Vyacheslav V. Marchenkov. Chin. Phys. B, 2021, 30(7): 077502.
[5] A novel diluted magnetic semiconductor (Ca,Na)(Zn,Mn)2Sb2 with decoupled charge and spin dopings
Yilun Gu(顾轶伦), Haojie Zhang(张浩杰), Rufei Zhang(张茹菲), Licheng Fu(傅立承), Kai Wang(王恺), Guoxiang Zhi(智国翔), Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2020, 29(5): 057507.
[6] Large reversible magnetocaloric effect induced by metamagnetic transition in antiferromagnetic HoNiGa compound
Yi-Xu Wang(王一旭), Hu Zhang(张虎), Mei-Ling Wu(吴美玲), Kun Tao(陶坤), Ya-Wei Li(李亚伟), Tim Yan(颜天宝), Ke-Wen Long(龙克文), Teng Long(龙腾), Zheng Pang(庞铮), Yi Long(龙毅). Chin. Phys. B, 2016, 25(12): 127104.
[7] Coexistence of positive and negative magnetic entropy changes in CeMn2(Si1-xGex)2 compounds
Zuo Wen-Liang (左文亮), Hu Feng-Xia (胡凤霞), Sun Ji-Rong (孙继荣), Shen Bao-Gen (沈保根). Chin. Phys. B, 2015, 24(9): 097104.
[8] Influences of P doping on magnetic phase transition and structure in MnCoSi ribbon
Du Qian-Heng (杜乾衡), Chen Guo-Fu (陈国富), Yang Wen-Yun (杨文云), Hua Mu-Xin (华慕欣), Du Hong-Lin (杜红林), Wang Chang-Sheng (王常生), Liu Shun-Quan (刘顺荃), Han Jing-Zhi (韩景智), Zhou Dong (周栋), Zhang Yan (张焱), Yang Jin-Bo (杨金波). Chin. Phys. B, 2015, 24(6): 067502.
[9] Spin, charge, and orbital orderings in iron-based superconductors
Jiang Qing (江庆), Kang Yao-Tai (康耀太), Yao Dao-Xin (姚道新). Chin. Phys. B, 2013, 22(8): 087402.
[10] Influence of the Jahn–Teller distortion on magnetic ordering in TbMn1-xFexO3
Jin Jin-Ling (靳金玲), Zhang Xiang-Qun (张向群), Li Guo-Ke (李国科), Cheng Zhao-Hua (成昭华). Chin. Phys. B, 2012, 21(10): 107501.
[11] Magnetic phase transitions and large mass enhancement in single crystal CaFe4As3
Zhang Xiao-Dong(张晓冬), Wu Wei(吴伟), Zheng Ping(郑萍), Wang Nan-Lin(王楠林), and Luo Jian-Lin(雒建林) . Chin. Phys. B, 2012, 21(1): 017402.
[12] Structure, dielectric and magnetodielectric properties of Bi1-xGdxFeO3 Ceramics
Li Jing-Bo(李静波), Rao Guang-Hui(饶光辉), Xiao Yin-Guo(肖荫果), Luo Jun(骆军) Liu Guang-Yao(刘广耀), Chen Jing-Ran(陈景然), and Jing-Kui Liang(梁敬魁). Chin. Phys. B, 2010, 19(10): 107505.
[13] Magnetocaloric effect in ErCo2 compound
Zou Jun-Ding(邹君鼎), Shen Bao-Gen(沈保根), and Sun Ji-Rong(孙继荣). Chin. Phys. B, 2007, 16(7): 1817-1821.
[14] Magnetic properties and magnetocaloric effect in TbCo2-xFex compounds
Zou Jun-Ding(邹君鼎), Shen Bao-Gen(沈保根), and Sun Ji-Rong(孙继荣). Chin. Phys. B, 2007, 16(12): 3843-3847.
[15] Magnetic properties and magnetic entropy changes of La1-xPrxFe11.5Si1.5 compounds with 0≤x≤ 0.5
Shen Jun (沈俊), Gao Bo (高博), Yan Li-Qin (闫丽琴), Li Yang-Xian (李养贤), Zhang Hong-Wei (张宏伟), Hu Feng-Xia (胡凤霞), and Sun Ji-Rong (孙继荣). Chin. Phys. B, 2007, 16(12): 3848-3852.
No Suggested Reading articles found!