CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic ordering induced magnetodielectric effect in Ho2Cu2O5 and Yb2Cu2O5 |
Hao Jin(金昊)1, Shuai Huang(黄帅)1,2,†, Kai-Qi Wan(万凯奇)1, Chang-Ming Zhu(朱长明)2, Hai-Ou Wang(王海欧)1, Kun-Peng Su(苏昆朋)1, and De-Xuan Huo(霍德璇)1,‡ |
1 Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Institute of Material Physics, Hangzhou Dianzi University, Hangzhou 310018, China; 2 Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology, Guangxi Normal University, Guilin 541004, China |
|
|
Abstract Materials with strongly coupled magnetic and electronic degrees of freedom provide new possibilities for practical applications. In this paper, we have investigated the structure, magnetic property, and magnetodielectric (MD) effect in Ho$_{2}$Cu$_{2}$O$_{5}$ and Yb$_{2}$Cu$_{2}$O$_{5}$ polycrystalline samples, which possess a non-centrosymmetric polar structure with space group $Pna$2$_{1}$. In Ho$_{2}$Cu$_{2}$O$_{5}$, Ho$^{3+}$ and Cu$^{2+}$ sublattices order simultaneously, exhibiting a typical paramagnetic to antiferromagnetic transition at 13.1 K. While for Yb$_{2}$Cu$_{2}$O$_{5}$, two magnetic transitions which originate from the orderings of Yb$^{3+}$ (7.8 K) and Cu$^{2+}$ (13.5 K) sublattices are observed. A magnetic field induced metamagnetic transition is obtained in these two cuprates below Néel temperature ($T_{\rm N}$). By means of dielectric measurement, distinct MD effect is demonstrated by the dielectric anomaly at $T_{\rm N}$. Meanwhile, the MD effect is found to be directly related to the metamagnetic transition. Due to the specific spin configuration and different spin evolution in the magnetic field, a positive MD effect is formed in Ho$_{2}$Cu$_{2}$O$_{5}$, and a negative one is observed in Yb$_{2}$Cu$_{2}$O$_{5}$. The spontaneous dielectric anomaly at $T_{\rm N}$ is regarded as arising from the shifts in optical phonon frequencies, and the magnetoelectric coupling is used to interpret the magnetic field induced MD effect. Moreover, an $H$-$T$ phase diagram is constructed for Ho$_{2}$Cu$_{2}$O$_{5}$ and Yb$_{2}$Cu$_{2}$O$_{5}$ based on the results of isothermal magnetic and dielectric hysteresis loops.
|
Received: 24 May 2022
Revised: 02 September 2022
Accepted manuscript online: 08 September 2022
|
PACS:
|
75.47.Lx
|
(Magnetic oxides)
|
|
75.85.+t
|
(Magnetoelectric effects, multiferroics)
|
|
77.22.-d
|
(Dielectric properties of solids and liquids)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11704091), the Open Project of Guangxi Key Laboratory of Nuclear Physics and Nuclear Technology (Grant No. NLK2021-10), and the Open Project of Key Laboratory of Novel Materials for Sensor of Zhejiang Province, China (Grant No. ZJKLNMS2021010). |
Corresponding Authors:
Shuai Huang, De-Xuan Huo
E-mail: huangshuai@hdu.edu.cn;dxhuo@hdu.edu.cn
|
Cite this article:
Hao Jin(金昊), Shuai Huang(黄帅), Kai-Qi Wan(万凯奇), Chang-Ming Zhu(朱长明),Hai-Ou Wang(王海欧), Kun-Peng Su(苏昆朋), and De-Xuan Huo(霍德璇) Magnetic ordering induced magnetodielectric effect in Ho2Cu2O5 and Yb2Cu2O5 2023 Chin. Phys. B 32 067504
|
[1] Ravi S P N, Mishra S and Athinarayanan S 2020 APL Mater. 8 040906 [2] Ramesh R and Martin L W2021 Riv. Nuovo Cimento 44 251 [3] Kagawa F, Mochizuki M, Onose Y, Murakawa H, Kaneko Y, Furukawa N and Tokura Y 2009 Phys. Rev. Lett. 102 057604 [4] Yin L H, Zou Y M, Yang J, Dai J M, Song W H, Zhu X B and Sun Y P 2016 Appl. Phys. Lett. 109 032905 [5] Subramanian M A, He T, Chen J, Rogado N S, Calvarese T G and Sleight A W 2006 Adv. Mater. 18 1737 [6] Rogado N S, Li J, Sleight A W and Subramanian M A 2005 Adv. Mater. 17 2225 [7] Zhang X, Zhao Y G, Cui Y F, Ye L D, Wang J W, Zhang S, Zhang H Y and Zhu M H 2012 Appl. Phys. Lett. 100 032901 [8] Chandrakanta K, Jena R, Pal P, Abdullah M F, Mohapatra S R, Kaushik S D and Singh A K 2020 J. Mater. Sci.: Mater. Electron. 31 15875 [9] Adem U, Nénert G, Arramel, Mufti N, Blake G R and Palstra T T M 2009 Eur. Phys. J. B 71 393 [10] Samara G A and Scott J F 1977 Solid State Commun. 21 167 [11] Troć R, Klamut J, Bukowski Z, Horyń R and Stępień-Damm J 1989 Physica B 154 189 [12] Kazei Z A, Kolmakova N P, Levitin R Z, Mill B V, Moshchalkov V V, Orlov V N, Snegirev V V and Zoubkova J 1990 J. Magn. Magn. Mater. 86 124 [13] arcía-Muñoz J L G, Rodríguez-Carvajal J, Obradors X, Vallet-Regí M, González-Calbet J and Parras M 1991 Phys. Rev. B 44 4716 [14] García-Muñoz J L and Rodríguez-Carvajal J 1995 J. Solid State Chem. 115 324 [15] Matsuoka Y, Nishimura Y, Mitsudo S, Nojiri H, Komatsu H, Motokawa M, Kakurai K, Nakajima K, Karasawa Y and Niimura N1998 J. Magn. Magn. Mater. 177 729 [16] Cheong S W, Thompson J D, Fisk Z, Martin K A K and Garcia E 1988 Phys. Rev. B 38 7013 [17] García-Munoz J L, Obradors X and Rodríguez-Carvajal J 1995 Phys. Rev. B 51 6594 [18] Li L, Wang J, Su K, Huo D and Qi Y 2016 J. Alloys Compd. 658 500 [19] Lebech B, Matsuoka Y, Kakurai K and Motokawa M 2005 Prog. Theor. Phys. Supp. 159 222 [20] Golosovsky I V, Plakhty V P, Harchenkov V P, Sharigin S V and Schweizer J 1994 J. Magn. Magn. Mater. 129 233 [21] Banerjee A, Sannigrahi J, Giri S and Majumdar S 2017 J. Phys.: Condens. Matter. 29 115803 [22] Murasik A, Fischer P, Troć R and Bukowski Z 1990 Solid State Commun. 75 785 [23] Huang S, Jin H, Wan K Q, Wang H O, Su K P, Yang D X, Yang L and Huo D X 2022 J. Appl. Phys. 131 054102 [24] Denisov V M, Denisova L T, Chumilina L G and Kirik S D 2013 Phys. Solid State 55 2023 [25] Guo R, You J H, Han F, Li C Y, Zheng G Y, Xiao W C and Liu X W 2017 Appl. Surf. Sci. 396 1076 [26] Aldemir D A2019 J Mater. Sci. 30 19457 [27] Sundaresan A, Ghosh K, Ramakrishnan S, Gupta L C, Chandra G, Sharon M and Vijayaraghavan R 1994 Phys. Rev. B 49 6388 [28] Khanh N D, Abe N, Matsuura K, Sagayama H, Tokunaga Y and Arima T 2019 Appl. Phys. Lett. 114 102905 [29] Lawes G, Ramirez A P, Varma C M and Subramanian M A 2003 Phys. Rev. Lett. 91 257208 [30] Zhou J P, Zhang Y X, Liu Q and Liu P 2014 Acta Mater. 76 355 [31] Alrub A M 2019 J. Appl. Phys. 126 154102 [32] Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M and Tokura Y 2003 Phys. Rev. B 67 180401 [33] Lawes G, Kimura T, Varma C M, Subramanian M A, Rogado N, Cava R J and Ramirez A P 2009 Prog. Solid State Chem. 37 40 [34] Catalan G 2006 Appl. Phys. Lett. 88 102902 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|