|
|
|
Lattice and phonon properties in semiconductors FeSb2 and RuSb2 |
| Meng Zhang(张萌)1, Shengnan Dai(戴胜男)2,†, Ranran Zhang(张冉冉)3, Mingfang Shu(舒明方)1, Wei Xu(徐威)1, Jinfeng Zhu(朱金峰)1, Xianglin Liu(刘祥麟)4, Yixuan Luo(罗伊轩)4, Toru Ishigaki5, Bo Duan(段波)6, Yanfeng Guo(郭艳峰)4,7, Zhe Qu(屈哲)3, Jiong Yang(杨炯)2, and Jie Ma(马杰)1,‡ |
1 Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China; 2 Materials Genome Institute, Shanghai University, Shanghai 200444, China; 3 Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; 4 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China; 5 Neutron Industrial Application Promotion Center, Comprehensive Research Organization for Science and Society, Naka, Ibaraki 319-1106, Japan; 6 Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, School of Science, Wuhan University of Technology, Wuhan 430070, China; 7 ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China |
|
|
|
|
Abstract The family of transition-metal dipnictides, $MX_{2}$ ($M$: metal, $X$: N, P, As, Sb, and Bi), has emerged as an important quantum material system due to its unique physical properties, such as large magnetoresistance, colossal Seebeck coefficients, and Weyl semimetal characteristics. In order to study the $M$-site ions effect on the lattice structure and the related dynamics, we compared two isostructural compounds, FeSb$_{2}$ and RuSb$_{2}$. Neutron diffraction, specific heat, and Raman scattering spectra of RuSb$_{2}$ were measured. We found that the thermal expansion coefficients are isotropic for RuSb$_{2}$, in contrast to the anisotropic behavior reported previously in FeSb$_{2}$. Moreover, the specific heat of RuSb$_{2}$ shows a boson-like anomaly around 25 K. Four of the six predicted vibrational modes were identified by polarized Raman scattering spectra and successfully simulated by ab initio calculations. Meanwhile, the temperature-dependent linewidths reveal that phonon-phonon interactions might dominate above 50 K, while electron-phonon coupling remains relatively weak.
|
Received: 05 April 2025
Revised: 06 May 2025
Accepted manuscript online: 19 May 2025
|
|
PACS:
|
63.20.-e
|
(Phonons in crystal lattices)
|
| |
61.05.F-
|
(Neutron diffraction and scattering)
|
| |
63.20.Ry
|
(Anharmonic lattice modes)
|
| |
78.30.-j
|
(Infrared and Raman spectra)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2032213 and 12334008), the Guangdong Provincial Key Laboratory of Extreme Conditions (Grant No. 2023B1212010002). We thank the staff members of the Micro-Raman Spectroscopy System (https://cstr.cn/31125.02.SHMFF.RAMAN) at the Steady High Magnetic Field Facility, CAS (https://cstr.cn/31125.02.SHMFF), for providing technical support and assistance in data collection and analysis. We acknowledge the beam time granted by J-PARC (proposal No. 2019A0191). |
Corresponding Authors:
Shengnan Dai, Jie Ma
E-mail: musenc@shu.edu.cn;jma3@sjtu.edu.cn
|
Cite this article:
Meng Zhang(张萌), Shengnan Dai(戴胜男), Ranran Zhang(张冉冉), Mingfang Shu(舒明方), Wei Xu(徐威), Jinfeng Zhu(朱金峰), Xianglin Liu(刘祥麟), Yixuan Luo(罗伊轩), Toru Ishigaki, Bo Duan(段波), Yanfeng Guo(郭艳峰), Zhe Qu(屈哲), Jiong Yang(杨炯), and Jie Ma(马杰) Lattice and phonon properties in semiconductors FeSb2 and RuSb2 2025 Chin. Phys. B 34 086302
|
[1] Kumar N, Sun Y, Xu N, Manna K, Yao M, Süss V, Leermakers I, Young O, Förster T, Schmidt M, Borrmann H, Yan B, Zeitler U, Shi M, Felser C and Shekhar C 2017 Nat. Commun. 8 1642 [2] Wang A, Graf D, Liu Y, Du Q, Zheng J, Lei H and Petrovic C 2017 Phys. Rev. B 96 121107 [3] Lv Y Y, Li X, Zhang J, Pang B, Chen S S, Cao L, Zhang B B, Lin D, Chen Y B, Yao S H, Zhou J, Zhang S T, Lu M H, Tian M and Chen Y F 2018 Phys. Rev. B 97 245151 [4] Razzoli E, Zwartsenberg B, Michiardi M, Boschini F, Day R P, Elfimov I S, Denlinger J D, Süss V, Felser C and Damascelli A 2018 Phys. Rev. B 97 201103 [5] Liu X, Yu Z, Li J, Xu Z, Zhou C, Dong Z, Zhang L, Wang X, Yu N, Zou Z, Wang X and Guo Y 2023 Chin. Phys. B 32 018102 [6] Wang Y Y, Yu Q H, Guo P J, Liu K and Xia T L 2016 Phys. Rev. B 94 041103 [7] Yuan Z, Lu H, Liu Y, Wang J and Jia S 2016 Phys. Rev. B 93 184405 [8] Shen B, Deng X, Kotliar G and Ni N 2016 Phys. Rev. B 93 195119 [9] Takahashi H, Okazaki R, Ishiwata S, Taniguchi H, Okutani A, Hagiwara M and Terasaki I 2016 Nat. Commun. 7 12732 [10] Bentien A, Johnsen S, Madsen G K H, Iversen B B and Steglich F 2007 Europhys. Lett. 80 17008 [11] Du Q, Guzman D, Choi S and Petrovic C 2020 Phys. Rev. B 101 035125 [12] Sun P, Oeschler N, Johnsen S, Iversen B B and Steglich F 2009 Appl. Phys. Express 2 091102 [13] Gippius A A, Baenitz M, Okhotnikov K S, Johnsen S, Iversen B and Shevelkov A V 2014 Appl. Magn. Reson. 45 1237 [14] Zhang L, Wang Y and Chang H 2020 Materials 13 3159 [15] Petrovic C, Lee Y, Vogt T, Lazarov N, Bud’ko S and Canfield P 2005 Phys. Rev. B 72 045103 [16] Zhu J, Ren Q, Chen C,Wang C, Shu M, He M, Zhang C, Le MD, Torri S, Wang C-W, Wang J, Cheng Z, Li L, Wang G, Jiang Y, Wu M, Qu Z, Tong X, Chen Y, Zhang Q and Ma J 2024 Nat. Commun. 15 2618 [17] Vasiliev A N, Voloshok T N, Granato A V, Joncich D M, Mitrofanov Y P and Khonik V A 2009 Phys. Rev. B 80 172102 [18] Nakamura K, Takahashi Y and Fujiwara T 2014 Sci. Rep. 4 6523 [19] Delaire O, May A F, McGuire M A, Porter W D, Lucas M S, Stone M B, Abernathy D L, Ravi V A, Firdosy S A and Snyder G J 2009 Phys. Rev. B 80 184302 [20] Wu J, Lin Y, Shu M, Liu Y, Ma Y, Lin G, Zhang C, Jiao P, Zhu F,Wu Y, Ewings R A, Walker H C, Deng G, Chi S, Jiang S, Baggioli M, Jin M, Wang H, Xie W, Wei T R, Yang J, Shi X and Ma J 2024 Nat. Commun. 15 6248 [21] Krivchikov A I, Vdovichenko G A, Korolyuk O A, Bermejo F J, Pardo L C, Tamarit J L, Jezowski A and Szewczyk D 2015 J. Non. Cryst. Solids 407 141 [22] Baran A, Botko M, Kajnaková M, Feher A, Feodosyev S, Syrkin E, Klochko M, Tovstyuk N, Grygorchak I and Fomenko V 2015 Low Temp. Phys. 41 930 [23] Baggioli M and Zaccone A 2019 J. Phys.: Mater. 3 015004 [24] Krivchikov A I, Je·zowski A, Szewczyk D, Korolyuk O A, Romantsova O O, Buravtseva L M, Cazorla C and Tamarit J L 2022 J. Phys. Chem. Lett. 13 5061 [25] Cano A and Levanyuk A P 2004 Phys. Rev. B 70 212301 [26] Du Q, Tong X, Liu Y and Petrovic C 2021 Appl. Phys. Lett. 118 171904 [27] Lazarević N, Popović Z V, Hu R and Petrovic C 2010 Phys. Rev. B 81 144302 [28] Lin G T,Wang Y Q, Luo X, Ma J, Zhuang H L, Qian D, Yin L H, Chen F C, Yan J, Zhang R R, Zhang S L, Tong W, Song W H, Tong P, Zhu X B and Sun Y P 2018 Phys. Rev. B 97 064405 [29] Wan Y, Jiao J, Lin G, Wu Y, Wang X, Zhang R, Sun Q, Tong W, Wang G, Ren Q, Zhu J, Zhao B, Zhang M, Chen M, Weissenrieder J, Yao X and Ma J 2023 J. Alloys Compd. 932 167526 [30] Jin F, Ma X, Guo P, Yi C, Wang L, Wang Y, Yu Q, Sheng J, Zhang A, Ji J, Tian Y, Liu K, Shi Y, Xia T and Zhang Q 2016 Phys. Rev. B 94 094302 [31] Racu A M, Menzel D, Schoenes J, Marutzky M, Johnsen S and Iversen B B 2008 J. Appl. Phys. 103 07C912 [32] Racu A M, Menzel D, Schoenes J and Doll K 2007 Phys. Rev. B 76 115103 [33] Acharyya P, Ghosh T, Pal K, Rana K S, Dutta M, Swain D, Etter M, Soni A, Waghmare U V and Biswas K 2022 Nat. Commun. 13 5053 [34] Lazarević N, Radonjić M M, Tanasković D, Hu R, Petrovic C and Popović Z V 2012 J. Phys.: Condens. Matter 24 255402 [35] Fuccillo M K, Gibson Q D, Ali M N, Schoop L M and Cava R J 2013 APL Materials 1 062102 [36] Xu W, Lin G, Shu M, Jiao J, Zhu J, Ren Q, Le M D, Luo X, Sun Y, Liu Y, Qu Z, Zhou H, Gao S and Ma J 2024 Chin. Phys. Lett. 41 117503 [37] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [38] Kresse G and Furthmüller J 1996 Comput. Mater. Sci 6 15 [39] Kresse G and Joubert D 1998 Phys. Rev. B 59 3 [40] Furness J W, Kaplan A D, Ning J, Perdew J P and Sun J 2020 J. Phys. Chem. Lett. 11 8208 [41] Togo A and Tanaka I 2015 Scr. Mater. 108 1 [42] Togo A 2001 J. Phys. Soc. Jpn. 92 012001 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|