Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 086302    DOI: 10.1088/1674-1056/adda0e
RAPID COMMUNICATION Prev   Next  

Lattice and phonon properties in semiconductors FeSb2 and RuSb2

Meng Zhang(张萌)1, Shengnan Dai(戴胜男)2,†, Ranran Zhang(张冉冉)3, Mingfang Shu(舒明方)1, Wei Xu(徐威)1, Jinfeng Zhu(朱金峰)1, Xianglin Liu(刘祥麟)4, Yixuan Luo(罗伊轩)4, Toru Ishigaki5, Bo Duan(段波)6, Yanfeng Guo(郭艳峰)4,7, Zhe Qu(屈哲)3, Jiong Yang(杨炯)2, and Jie Ma(马杰)1,‡
1 Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
2 Materials Genome Institute, Shanghai University, Shanghai 200444, China;
3 Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
4 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
5 Neutron Industrial Application Promotion Center, Comprehensive Research Organization for Science and Society, Naka, Ibaraki 319-1106, Japan;
6 Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, School of Science, Wuhan University of Technology, Wuhan 430070, China;
7 ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, China
Abstract  The family of transition-metal dipnictides, $MX_{2}$ ($M$: metal, $X$: N, P, As, Sb, and Bi), has emerged as an important quantum material system due to its unique physical properties, such as large magnetoresistance, colossal Seebeck coefficients, and Weyl semimetal characteristics. In order to study the $M$-site ions effect on the lattice structure and the related dynamics, we compared two isostructural compounds, FeSb$_{2}$ and RuSb$_{2}$. Neutron diffraction, specific heat, and Raman scattering spectra of RuSb$_{2}$ were measured. We found that the thermal expansion coefficients are isotropic for RuSb$_{2}$, in contrast to the anisotropic behavior reported previously in FeSb$_{2}$. Moreover, the specific heat of RuSb$_{2}$ shows a boson-like anomaly around 25 K. Four of the six predicted vibrational modes were identified by polarized Raman scattering spectra and successfully simulated by ab initio calculations. Meanwhile, the temperature-dependent linewidths reveal that phonon-phonon interactions might dominate above 50 K, while electron-phonon coupling remains relatively weak.
Keywords:  transition-metal dipnictide      neutron diffraction      Raman      boson-like peak  
Received:  05 April 2025      Revised:  06 May 2025      Accepted manuscript online:  19 May 2025
PACS:  63.20.-e (Phonons in crystal lattices)  
  61.05.F- (Neutron diffraction and scattering)  
  63.20.Ry (Anharmonic lattice modes)  
  78.30.-j (Infrared and Raman spectra)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U2032213 and 12334008), the Guangdong Provincial Key Laboratory of Extreme Conditions (Grant No. 2023B1212010002). We thank the staff members of the Micro-Raman Spectroscopy System (https://cstr.cn/31125.02.SHMFF.RAMAN) at the Steady High Magnetic Field Facility, CAS (https://cstr.cn/31125.02.SHMFF), for providing technical support and assistance in data collection and analysis. We acknowledge the beam time granted by J-PARC (proposal No. 2019A0191).
Corresponding Authors:  Shengnan Dai, Jie Ma     E-mail:  musenc@shu.edu.cn;jma3@sjtu.edu.cn

Cite this article: 

Meng Zhang(张萌), Shengnan Dai(戴胜男), Ranran Zhang(张冉冉), Mingfang Shu(舒明方), Wei Xu(徐威), Jinfeng Zhu(朱金峰), Xianglin Liu(刘祥麟), Yixuan Luo(罗伊轩), Toru Ishigaki, Bo Duan(段波), Yanfeng Guo(郭艳峰), Zhe Qu(屈哲), Jiong Yang(杨炯), and Jie Ma(马杰) Lattice and phonon properties in semiconductors FeSb2 and RuSb2 2025 Chin. Phys. B 34 086302

[1] Kumar N, Sun Y, Xu N, Manna K, Yao M, Süss V, Leermakers I, Young O, Förster T, Schmidt M, Borrmann H, Yan B, Zeitler U, Shi M, Felser C and Shekhar C 2017 Nat. Commun. 8 1642
[2] Wang A, Graf D, Liu Y, Du Q, Zheng J, Lei H and Petrovic C 2017 Phys. Rev. B 96 121107
[3] Lv Y Y, Li X, Zhang J, Pang B, Chen S S, Cao L, Zhang B B, Lin D, Chen Y B, Yao S H, Zhou J, Zhang S T, Lu M H, Tian M and Chen Y F 2018 Phys. Rev. B 97 245151
[4] Razzoli E, Zwartsenberg B, Michiardi M, Boschini F, Day R P, Elfimov I S, Denlinger J D, Süss V, Felser C and Damascelli A 2018 Phys. Rev. B 97 201103
[5] Liu X, Yu Z, Li J, Xu Z, Zhou C, Dong Z, Zhang L, Wang X, Yu N, Zou Z, Wang X and Guo Y 2023 Chin. Phys. B 32 018102
[6] Wang Y Y, Yu Q H, Guo P J, Liu K and Xia T L 2016 Phys. Rev. B 94 041103
[7] Yuan Z, Lu H, Liu Y, Wang J and Jia S 2016 Phys. Rev. B 93 184405
[8] Shen B, Deng X, Kotliar G and Ni N 2016 Phys. Rev. B 93 195119
[9] Takahashi H, Okazaki R, Ishiwata S, Taniguchi H, Okutani A, Hagiwara M and Terasaki I 2016 Nat. Commun. 7 12732
[10] Bentien A, Johnsen S, Madsen G K H, Iversen B B and Steglich F 2007 Europhys. Lett. 80 17008
[11] Du Q, Guzman D, Choi S and Petrovic C 2020 Phys. Rev. B 101 035125
[12] Sun P, Oeschler N, Johnsen S, Iversen B B and Steglich F 2009 Appl. Phys. Express 2 091102
[13] Gippius A A, Baenitz M, Okhotnikov K S, Johnsen S, Iversen B and Shevelkov A V 2014 Appl. Magn. Reson. 45 1237
[14] Zhang L, Wang Y and Chang H 2020 Materials 13 3159
[15] Petrovic C, Lee Y, Vogt T, Lazarov N, Bud’ko S and Canfield P 2005 Phys. Rev. B 72 045103
[16] Zhu J, Ren Q, Chen C,Wang C, Shu M, He M, Zhang C, Le MD, Torri S, Wang C-W, Wang J, Cheng Z, Li L, Wang G, Jiang Y, Wu M, Qu Z, Tong X, Chen Y, Zhang Q and Ma J 2024 Nat. Commun. 15 2618
[17] Vasiliev A N, Voloshok T N, Granato A V, Joncich D M, Mitrofanov Y P and Khonik V A 2009 Phys. Rev. B 80 172102
[18] Nakamura K, Takahashi Y and Fujiwara T 2014 Sci. Rep. 4 6523
[19] Delaire O, May A F, McGuire M A, Porter W D, Lucas M S, Stone M B, Abernathy D L, Ravi V A, Firdosy S A and Snyder G J 2009 Phys. Rev. B 80 184302
[20] Wu J, Lin Y, Shu M, Liu Y, Ma Y, Lin G, Zhang C, Jiao P, Zhu F,Wu Y, Ewings R A, Walker H C, Deng G, Chi S, Jiang S, Baggioli M, Jin M, Wang H, Xie W, Wei T R, Yang J, Shi X and Ma J 2024 Nat. Commun. 15 6248
[21] Krivchikov A I, Vdovichenko G A, Korolyuk O A, Bermejo F J, Pardo L C, Tamarit J L, Jezowski A and Szewczyk D 2015 J. Non. Cryst. Solids 407 141
[22] Baran A, Botko M, Kajnaková M, Feher A, Feodosyev S, Syrkin E, Klochko M, Tovstyuk N, Grygorchak I and Fomenko V 2015 Low Temp. Phys. 41 930
[23] Baggioli M and Zaccone A 2019 J. Phys.: Mater. 3 015004
[24] Krivchikov A I, Je·zowski A, Szewczyk D, Korolyuk O A, Romantsova O O, Buravtseva L M, Cazorla C and Tamarit J L 2022 J. Phys. Chem. Lett. 13 5061
[25] Cano A and Levanyuk A P 2004 Phys. Rev. B 70 212301
[26] Du Q, Tong X, Liu Y and Petrovic C 2021 Appl. Phys. Lett. 118 171904
[27] Lazarević N, Popović Z V, Hu R and Petrovic C 2010 Phys. Rev. B 81 144302
[28] Lin G T,Wang Y Q, Luo X, Ma J, Zhuang H L, Qian D, Yin L H, Chen F C, Yan J, Zhang R R, Zhang S L, Tong W, Song W H, Tong P, Zhu X B and Sun Y P 2018 Phys. Rev. B 97 064405
[29] Wan Y, Jiao J, Lin G, Wu Y, Wang X, Zhang R, Sun Q, Tong W, Wang G, Ren Q, Zhu J, Zhao B, Zhang M, Chen M, Weissenrieder J, Yao X and Ma J 2023 J. Alloys Compd. 932 167526
[30] Jin F, Ma X, Guo P, Yi C, Wang L, Wang Y, Yu Q, Sheng J, Zhang A, Ji J, Tian Y, Liu K, Shi Y, Xia T and Zhang Q 2016 Phys. Rev. B 94 094302
[31] Racu A M, Menzel D, Schoenes J, Marutzky M, Johnsen S and Iversen B B 2008 J. Appl. Phys. 103 07C912
[32] Racu A M, Menzel D, Schoenes J and Doll K 2007 Phys. Rev. B 76 115103
[33] Acharyya P, Ghosh T, Pal K, Rana K S, Dutta M, Swain D, Etter M, Soni A, Waghmare U V and Biswas K 2022 Nat. Commun. 13 5053
[34] Lazarević N, Radonjić M M, Tanasković D, Hu R, Petrovic C and Popović Z V 2012 J. Phys.: Condens. Matter 24 255402
[35] Fuccillo M K, Gibson Q D, Ali M N, Schoop L M and Cava R J 2013 APL Materials 1 062102
[36] Xu W, Lin G, Shu M, Jiao J, Zhu J, Ren Q, Le M D, Luo X, Sun Y, Liu Y, Qu Z, Zhou H, Gao S and Ma J 2024 Chin. Phys. Lett. 41 117503
[37] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[38] Kresse G and Furthmüller J 1996 Comput. Mater. Sci 6 15
[39] Kresse G and Joubert D 1998 Phys. Rev. B 59 3
[40] Furness J W, Kaplan A D, Ning J, Perdew J P and Sun J 2020 J. Phys. Chem. Lett. 11 8208
[41] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[42] Togo A 2001 J. Phys. Soc. Jpn. 92 012001
[1] Layer-dependent structural stability and electronic properties of CrPS4 under high pressure
Jian Zhu(朱健), Dengman Feng(冯登满), Liangyu Wang(王亮予), Liang Li(李亮), Fangfei Li(李芳菲), Qiang Zhou(周强), and Yalan Yan(闫雅兰). Chin. Phys. B, 2025, 34(6): 066102.
[2] Anomalous lattice vibration in monolayer MoS2 induced by DUV laser: A first-principles investigation
Weidong Wang(王卫东), Renhui Liu(刘仁辉), Ye Zhang(张也), Huaihong Guo(郭怀红), Jianqi Huang(黄建啟), Zhantong Liu(刘展彤), Heting Zhao(赵贺霆), Kai Wang(王凯), Bo Zhao(赵波), and Teng Yang(杨腾). Chin. Phys. B, 2025, 34(6): 066301.
[3] Laser power-induced Fermi-level shift in graphene/Al2O3 under ambient atmosphere: Toward neutralizing unintentional graphene doping
Jamal Q. M. Almarashi, Mohamed K. Zayed, Hesham Fares, Heba Sukar, Takao Ono, Yasushi Kanai, and Mohamed Almokhtar. Chin. Phys. B, 2025, 34(6): 066302.
[4] Band gap engineering and vibrational properties of van der Waals semiconductor ZnPSe3 under compression
Rouqiong Su(苏柔琼), Yuying Li(李玉莹), Chunhua Chen(陈春华), Yifang Yuan(袁亦方), and Haizhong Guo(郭海中). Chin. Phys. B, 2025, 34(6): 066205.
[5] Polarization-sensitive nonlinear optical diffraction
Jianluo Chen(陈健洛), Lihong Hong(洪丽红), Yu Zou(邹娱), Jiacheng Li(李嘉诚), and Zhi-Yuan Li(李志远). Chin. Phys. B, 2025, 34(6): 064204.
[6] Stokes/anti-Stokes Raman spectroscopy of Al0.86Ga0.14N semiconductor alloy
Yuru Lin(林玉茹), Yu Li(李宇), Binbin Wu(吴彬彬), Jingyi Liu(刘静仪), Ruiang Guo(郭睿昂), Yangbin Wang(王扬斌), Qiwei Hu(胡启威), and Li Lei(雷力). Chin. Phys. B, 2025, 34(5): 057802.
[7] Well defined phase boundaries and superconductivity with high Tc in PbSe single crystal
Jiawei Hu(胡佳玮), Yanghao Meng(孟养浩), He Zhang(张赫), Wei Zhong(钟韦), Hang Zhai(翟航), Xiaohui Yu(于晓辉), Binbin Yue(岳彬彬), and Fang Hong(洪芳). Chin. Phys. B, 2025, 34(4): 046102.
[8] Robustness of ferromagnetism in van der Waals magnet Fe3GeTe2 to hydrostatic pressure
Yonglin Wang(王涌霖), Xu-Tao Zeng(曾旭涛), Bo Li(李博), Cheng Su(宿程), Takanori Hattori, Xian-Lei Sheng(胜献雷), and Wentao Jin(金文涛). Chin. Phys. B, 2025, 34(4): 046203.
[9] Intensity enhancement of Raman active and forbidden modes induced by naturally occurred hot spot at GaAs edge
Tao Liu(刘涛), Miao-Ling Lin(林妙玲), Da Meng(孟达), Xin Cong(从鑫), Qiang Kan(阚强), Jiang-Bin Wu(吴江滨), and Ping-Heng Tan(谭平恒). Chin. Phys. B, 2025, 34(1): 017801.
[10] Optical PAM-4/PAM-8 generation via dual-Raman process in Rydberg atoms
Xiao-Yun Song(宋晓云), Zheng Yin(尹政), Guan-Yu Ren(任冠宇), Ming-Zhi Han(韩明志), Ai-Hong Yang(杨艾红), Yi-Hong Qi(祁义红), and Yan-Dong Peng(彭延东). Chin. Phys. B, 2024, 33(6): 064203.
[11] Influences of divalent ion substitution on the magnetic and dielectric properties of W-type barium ferrite
Shiyue He(何诗悦), Ruoshui Liu(刘若水), Xujie Liu(刘煦婕), Xianping Ye(叶先平), Lichen Wang(王利晨), and Baogen Shen(沈保根). Chin. Phys. B, 2024, 33(6): 066801.
[12] Broadband bidirectional Brillouin-Raman random fiber laser with ultra-narrow linewidth
Qian Yang(杨茜), Yang Li(李阳), Hui Zou(邹辉), Jie Mei(梅杰), En-Ming Xu(徐恩明), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2024, 33(2): 024206.
[13] Gigahertz frequency hopping in an optical phase-locked loop for Raman lasers
Dekai Mao(毛德凯), Hongmian Shui(税鸿冕), Guoling Yin(殷国玲), Peng Peng(彭鹏), Chunwei Wang(王春唯), and Xiaoji Zhou(周小计). Chin. Phys. B, 2024, 33(2): 024209.
[14] Determining the tilt of the Raman laser beam using an optical method for atom gravimeters
Hua-Qing Luo(骆华清), Yao-Yao Xu(徐耀耀), Jia-Feng Cui(崔嘉丰), Xiao-Bing Deng(邓小兵), Min-Kang Zhou(周敏康), Xiao-Chun Duan(段小春), and Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2024, 33(12): 123701.
[15] Identifying the effect of photo-generated carriers on the phonons in rutile TiO2 through Raman spectroscopy
Zheng Wang(王征), Min Liao(廖敏), Guihua Wang(王桂花), and Meng Zhang(张梦). Chin. Phys. B, 2024, 33(11): 117802.
No Suggested Reading articles found!