| CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Laser power-induced Fermi-level shift in graphene/Al2O3 under ambient atmosphere: Toward neutralizing unintentional graphene doping |
| Jamal Q. M. Almarashi1, Mohamed K. Zayed1,2,†, Hesham Fares1,3,‡, Heba Sukar3, Takao Ono4, Yasushi Kanai4, and Mohamed Almokhtar3,4,§ |
1 Physics Department, College of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia; 2 Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 6111, Egypt; 3 Physics Department, Assiut University, Assiut 71516, Egypt; 4 The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihoga-oka, Ibaraki, Osaka 567-0047, Japan |
|
|
|
|
Abstract Manipulating unintentional doping in graphene layers, which is influenced by environmental factors and supporting substrates, is of significant concern for the performance and advancement of graphene-based devices. In this context, laser-induced tuning of charge carriers in graphene facilitates the exploration of graphene's properties in relation to its surroundings and enables laser-assisted functionalization. This has the potential to advance optoelectronic devices that utilize graphene on transparent dielectric substrates, such as Al$_{2}$O$_{3}$. In this work, laser power ($P_{\rm L}$) in Raman spectroscopy is used as a convenient contactless tool to manipulate and control unintentional carrier concentration and Fermi level position ($E_{\rm F}$) in graphene/$\alpha $-Al$_{2}$O$_{3}$ (G/Al$_{2}$O$_{3}$) under ambient conditions. Samples are annealed at 400 $^\circ$C for two hours in an ($\rm Ar+H_{2}$) atmosphere to remove any chemical residues. Analysis of the peak frequency ($\omega $) and full width at half maximum ($\varGamma $) of the G and 2D bands show that G/Al$_{2}$O$_{3}$ layers initially exhibit p-type doping, with $E_{\rm F}$ located at $\sim 100$ meV below its Dirac charge-neutral point (DCNP). Increasing $P_{\rm L}$ results in effective carrier manipulation and raises $E_{\rm F}$ above DCNP. No significant internal stress is produced due to $P_{\rm L}$, as inferred from the strain-sensitive G* band of graphene. Raman analysis of three successive cycles reveals hysteretic behavior from cycle to cycle, which is commonly reported to be limited by the type and density of the existing unintentional doping. Because of the ubiquitous nature of unintentional doping in graphene, manipulating it using contactless laser power to realize the desired graphene properties would be one of the best available practical approaches.
|
Received: 23 December 2024
Revised: 29 March 2025
Accepted manuscript online: 31 March 2025
|
|
PACS:
|
63.22.Rc
|
(Phonons in graphene)
|
| |
68.65.Pq
|
(Graphene films)
|
| |
72.80.Vp
|
(Electronic transport in graphene)
|
| |
78.67.Wj
|
(Optical properties of graphene)
|
|
| Fund: The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number 445-9-687. |
Corresponding Authors:
Mohamed K. Zayed, Hesham Fares, Mohamed Almokhtar
E-mail: mkzayed@outlook.com;hfhassan@taibahu.edu.sa;almoktar@aun.edu.eg
|
Cite this article:
Jamal Q. M. Almarashi, Mohamed K. Zayed, Hesham Fares, Heba Sukar, Takao Ono, Yasushi Kanai, and Mohamed Almokhtar Laser power-induced Fermi-level shift in graphene/Al2O3 under ambient atmosphere: Toward neutralizing unintentional graphene doping 2025 Chin. Phys. B 34 066302
|
[1] Son I H, Park J H, Park S, Park K, Han S, Shin J, Doo S G, Hwang Y, Chang H and Choi J W 2017 Nat. Commun 8 1561 [2] Chodankar N R, Nanjundan A K, Losic D, Dubal D P and Baek J B 2020 Mater. Today Adv. 6 100053 [3] Zhan B, Li C, Yang J, Jenkins G, HuangWand Dong X 2014 Small 10 4042 [4] Zhang X, Jing Q, Ao S, Schneider G F, Kireev D, Zhang Z and Fu W 2019 Small 16 1902820 [5] Fares H, Almokhtar M, Almarashi J Q M, Rashad M and Moustafa S 2022 Physica E 142 115300 [6] Moustafa S, Almarashi J Q M, Almokhtar M, Fares H and Zayed M K 2023 Appl. Phys. A 129 376 [7] Fares H, Ahmed M and Moustafa S 2023 Phys. Scr. 98 035509 [8] Sprinkle M, Siegel D, Hu Y, Hicks J, Tejeda A, Taleb-Ibrahimi A, Le Fèvre P, Bertran F, Vizzini S, Enriquez H, Chiang S, Soukiassian P, Berger C, de Heer W A, Lanzara A and Conrad E H 2009 Phys. Rev. Lett. 103 226803 [9] Bostwick A, McChesney J, Ohta T, Rotenberg E, Seyller T and Horn K 2009 Prog. Surf. Sci. 84 380 [10] Lee H, Paeng K and Kim I S 2018 Synthetic Metals 244 36 [11] Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J and Kelly P J 2008 Phys. Rev. Lett. 101 026803 [12] Caridad J M, Rossella F, Bellani V, Maicas M, PatriniMand Díez 2010 J. App. Phys. 108 084321 [13] Sojoudi H, Baltazar J, Henderson C and Graham S 2012 J. Vac. Sci. Technol. B 30 041213 [14] Chua C K, Ambrosi A, Sofer Z, Macková A, Havránek V, Tomandl I and Pumera M 2014 Chem. Eur. J. 20 15760 [15] Nistor R A, KurodaMA, Maarouf A A and Martyna G 2012 Phys. Rev. B 86 041409 [16] Ryu S, Liu L, Berciaud S, Yu Y J, Liu H, Kim P, Flynn G W and Brus L E 2010 Nano Lett. 10 4944 [17] Hu Z, Zhao Y, Zou W, Lu Q, Liao J, Li F, Shang M, Lin L and Liu Z 2022 Adv. Funct. Mater. 32 2203179 [18] Jankovský O, Libánská A, Bouša D, Sedmidubský D, Matějková S and Sofer Z 2016 Chem. Eur. J. 22 8627 [19] Mazánek V, Luxa J, Matějková S, Kučera J, Sedmidubský D, Pumera M and Sofer Z 2019 ACS Nano 13 1574 [20] Lin L, Zhang J, Su H, Li J, Sun L, Wang Z, Xu F, Liu C, Lopatin S, Zhu Y, Jia K, Chen S, Rui D, Sun J, Xue R, Gao P, Kang N, Han Y, Xu H Q, Cao Y, Novoselov K S, Tian Z, Ren B, Peng H and Liu Z 2019 Nat. Commun. 10 1912 [21] Yan Y, Nashath F Z, Chen S, Manickam S, Lim S S, Zhao H, Lester E, Wu T and Pang C H 2020 Nanotechnology Reviews 9 1284 [22] Lupina G, Kitzmann J, Costina I, Lukosius M, Wenger C, Wolff A, Vaziri S, Östling M, Pasternak I, Krajewska A, Strupinski W, Kataria S, Gahoi A, Lemme M C, Ruhl G, Zoth G, Luxenhofer O and Mehr W 2015 ACS Nano 9 4776 [23] Chua C K, Ambrosi A, Sofer Z, Macková A, Havránek V, Tomandl I and Pumera M 2014 Chem. Eur. J. 20 15760 [24] Masuda K and, Sano M 2015 Langmuir 31 4934 [25] Nistor R A, Kuroda M A, Maarouf A A, Martyna G J 2012 Phys Rev. B 86 041409 [26] Ishigami M, Chen J H, Cullen W G, Fuhrer M S and Williams E D 2007 Nano Lett. 7 1643 [27] Kang Y J, Kang J and Chang K J 2008 Phys. Rev. B 78 115404 [28] Shemella P and Nayak S K 2009 Appl. Phys. Lett. 94 032101 [29] Nguyen T C, Otani M and Okada S. 2011 Phys. Rev. Lett. 106 106801 [30] Hong N, Kireev D, Zhao Q, Chen D, Akinwande D and Li W 2021 Adv. Mater. 34 2106615 [31] Fechine G J M, Martin-Fernandez I, Yiapanis G, Bentini R, Kulkarni E S, Bof de Oliveira R V, Hu X, Yarovsky I, Castro Neto A H and Özyilmaz B 2015 Carbon 83 224 [32] Caldwell J D, Anderson T J, Culbertson J C, Jernigan G G, Hobart K D, Kub F J, Tadjer M J, Tedesco J L, Hite J K, Mastro M A, Myers-Ward R L, Eddy C R Jr, Campbell P M and Gaskill D K 2010 ACS Nano 4 1108 [33] Kretinin A V, Cao Y, Tu J S, Yu G L, Jalil R, Novoselov K S, Haigh S J, Gholinia A, Mishchenko A, Lozada M, Georgiou T, Woods C R, Withers F, Blake P, Eda G,Wirsig A, Hucho C,Watanabe K, Taniguchi T, Geim A K and Gorbachev R V 2014 Nano Lett. 14 3270 [34] Shautsova V, Gilbertson A M, Black N C G, Maier S A and Cohen L F 2016 Sci. Rep. 6 30210 [35] Wang L, Zihlmann S, Baumgartner A, Overbeck J, Watanabe K, Taniguchi T, Makk P and Schönenberger C 2019 Nano Lett. 19 4097 [36] Knoch J and Muller M R 2014 IEEE Transactions on Nanotechnology 13 1044 [37] Oh J S, Kim K N and Yeom G Y 2014 J. Nanosci. Nanotechnol. 14 1120 [38] Lin Y C, Lu C C, Yeh C H, Jin C, Suenaga K and Chiu P W 2011 Nano Lett. 12 414 [39] Cheng Z, Zhou Q,Wang C, Li Q,Wang C and Fang Y 2011 Nano Lett. 11 767 [40] Nourbakhsh A, Cantoro M, Klekachev A, Clemente F, Sorée B, van der Veen M H, Vosch T, Stesmans A, Sels B and De Gendt S 2010 J. Phys. Chem. C 114 6894 [41] Kim Y, Cho D H, Ryu S and Lee C 2014 Carbon 67 673 [42] Ni Z H, Wang H M, Luo Z Q, Wang Y Y, Yu T, Wu Y and HandShen Z X 2010 J. Raman Spectrosc. 41 479 [43] Armano A, Buscarino G, Cannas M, Gelardi F M, Giannazzo F, Schilirò E and Agnello S 2018 Carbon 127 270 [44] Hulman M, Haluška M, Scalia G, Obergfell D and Roth S 2008 Nano Lett. 8 3594 [45] Tiberj A, Rubio-Roy M, Paillet M, Huntzinger J R, Landois P, Mikolasek M, Contreras S, Sauvajol J L, Dujardin E and Zahab A A 2013 Sci. Rep. 3 2355 [46] Kim M, Safron N S, Huang C, Arnold M S and Gopalan P 2011 Nano Lett. 12 182 [47] Lee H, Paeng K and Kim I S 2018 Synthetic Metals 244 36 [48] Luo Z, Pinto N J, Davila Y and Charlie Johnson A T 2012 Appl. Phys. Lett. 100 253108 [49] Iqbal M Z, Khan M F, Iqbal M W and Eom J 2014 J. Mater. Chem. C 2 5404 [50] Iqbal M Z, Iqbal M W, Khan M F and Eom J 2015 Phys. Chem. Chem. Phys. 17 20551 [51] Zayed M K, Fares H and Almokhtar M 2023 Appl. Surf. Sci. 641 158487 [52] Rho Y, Lee K, Wang L, Ko C, Chen Y, Ci P, Pei J, Zettl A, Wu J and Grigoropoulos 2022 Nat. Electron. 5 505 [53] Yang H, Qin S, Zheng X, Wang G, Tan Y, Peng G and Zhang X 2017 Nanomaterials 7 286 [54] Lee S, Lee Y, Kim S M and Song E B 2018 Carbon 127 70 [55] Ahn J, Chou H and Banerjee S K 2017 J. Appl. Phys. 121 163105 [56] Fallahazad B, Lee K, Lian G, Kim S, Corbet C M, Ferrer D A, Colombo L and Tutuc E 2012 Appl. Phys. Lett. 100 093112 [57] Tang B, Guoxin H and Gao H 2010 Appl. Spectrosc. Rev. 45 369 [58] Berciaud S, Ryu S, Brus L E and Heinz T F 2009 Nano Lett. 9 346 [59] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401 [60] Casiraghi C, Pisana S, Novoselov K S, Geim A K and Ferrari A C 2007 Appl. Phys. Lett. 91 233108 [61] Froehlicher G and Berciaud S 2015 Phys Rev B 91 205413 [62] Zafar Z, Ni Z H, Wu X, Shi Z X, Nan H Y, Bai J and Sun L T 2013 Carbon 61 57 [63] Zólyomi V, Koltai J and Kürti J 2011 Phys. Status Solidi B 248 2435 [64] Hao Y,Wang Y,Wang L, Ni Z,Wang Z,Wang R, Koo C K, Shen Z and Thong J T L 2010 Small 6 195 [65] Tiberj A, Rubio-Roy M, Paillet M, Huntzinger J R, Landois P, Mikolasek M, Contreras S, Sauvajol J L, Dujardin E and Zahab A A 2013 Sci. Rep. 3 2355 [66] Ji E, Kim M J, Lee J Y, Sung D, Kim N, Park J W, Hong S and Lee G H 2021 Carbon 184 651 [67] Almokhtar M, Fares H, Inoue K and Matsumoto K 2021 Appl. Surf. Sci. 541 148390 [68] Almokhtar M, Almarashi J Q M, Matsumoto K and Fares H 2022 Opt. Mater. 132 112770 [69] Wang Y, Zhou X, Jin Y, Zhang X, Zhang Z, Wang Y, Liu J, Wang M, Xia Y, Zhao P, Zhang Z and Wang H 2019 Phys. Rev. B 100 241407 [70] Kalosakas G, Lathiotakis N N and Papagelis K 2021 Materials 15 67 [71] Liu Y, Shi Y, Zhou W, Shi W, Dang W, Li X and Liang B 2021 Optics and Laser Technology 139 106960 [72] Calizo I, Bao W, Miao F, Lau C N and Balandin A A 2007 Appl. Phys. Lett. 91 201904 [73] Bruna M and Borini S 2010 Phys. Rev. B 81 125421 [74] Dong X, Shi Y, Zhao Y, Chen D, Ye J, Yao Y, Gao F, Ni Z, Yu T, Shen Z, Huang Y, Chen P and Li L J 2009 Phys. Rev. Lett. 102 135501 [75] Lin S S, Chen B G, Pan C T, Hu S, Tian P and Tong L M 2011 Appl. Phys. Lett. 99 233110 [76] Casiraghi C 2009 Phys. Rev. B 80 233407 [77] Lazzeri M and Mauri F 2006 Phys. Rev. Lett. 97 266407 [78] S Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, Ferrari A C and Mauri F 2007 Nat. Mat. 6 198 [79] Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P and Shepard K L 2008 Nat. Nanotech. 3 654 [80] Yan J, Zhang Y, Kim P and Pinczuk A 2007 Phys. Rev. Lett 98 166802 [81] Pickett W E and Allen P B 1977 Phys. Rev. B 16 3127 [82] Cho C, Gon Lee Y, Jung U, Goo Kang C, Lim S, Jun Hwang H, Choi H and Hun Lee B 2013 Appl. Phys. Lett. 103 083110 [83] Xu H, Chen Y, Zhang J and Zhang H 2012 Small 8 2833 [84] Kalita H, V H, Shinde D B, Pillai V K and Aslam M 2013 Appl. Phys. Lett. 102 143104 [85] Iqbal M Z, Siddique S and Zain-ul-Abideen 2017 Carbon 123 168 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|