1 Key Laboratory of Material Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China; 2 Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, China; 3 Institute of Quantum Materials and Physics, Henan Academy of Sciences, Zhengzhou 450046, China
Abstract In recent years, transition metal phosphorus trichalcogenides P ( transition metal, S, Se) have garnered significant attention in the field of two-dimensional van der Waals materials on account of their unique layered structures and diverse physical properties. In this work, we systematically investigated the vibrational modes and band gap evolution of ZnPSe under extreme conditions using Raman spectroscopy and high-pressure ultraviolet-visible (UV-vis) absorption spectroscopy. The experimental results demonstrate that the vibrational modes of ZnPSe remain stable at low temperatures (5-300 K) and high pressures (0-22.1 GPa). Notably, the band gap of ZnPSe exhibits an initial increase followed by a decrease under pressures ranging from 0 to 20.6 GPa, which is likely associated with a pressure-induced transition from an indirect to a direct band gap. This work not only enriches the understanding of van der Waals materials but also provides crucial experimental insights for their application in band gap engineering.
(Absorption and reflection spectra: visible and ultraviolet)
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400204 and 2021YFA0718701) and the National Natural Science Foundation of China (Grant Nos. 12204420, 12474021, and 12174347).
Rouqiong Su(苏柔琼), Yuying Li(李玉莹), Chunhua Chen(陈春华), Yifang Yuan(袁亦方), and Haizhong Guo(郭海中) Band gap engineering and vibrational properties of van der Waals semiconductor ZnPSe3 under compression 2025 Chin. Phys. B 34 066205
[1] Autieri C, Cuono G, Noce C, Rybak M, Kotur K M, Agrapidis C E, Wohlfeld K and Birowska M 2022 J. Phys. Chem. C 126 6791 [2] Li Y, Li Y, Zhang Q, Su N, Sun J, Xiao N, Liu Y, Liu Y, Zhang J and Liu H 2023 Mater. Today Commun. 36 106661 [3] Wang G, Yang K, Ma Y, Liu L, Lu D, Zhou Y and Wu H 2023 Chin. Phys. Lett. 40 077301 [4] Friedel M C 1894 CR l’Académie. Sci. Ser 3 119 [5] Susner M A, Chyasnavichyus M, Mcguire M A, Ganesh P and Maksymovych P 2017 Adv. Mater. 29 1602852 [6] Mi M, Xiao H, Yu L, Zhang Y, Wang Y, Cao Q and Wang Y 2023 Mater. Today Nano 24 100408 [7] Zhou J, Zhu C, Zhou Y, Dong J, Li P, Zhang Z, Wang Z, Lin Y C, Shi J, Zhang R, Zheng, Yu H, Tang B, Liu F, Wang L, Liu L, Liu G, Hu W, Gao Y, Yang H, Gao W, Lu L, Wang Y, Suenaga K, Liu G, Ding F, Yao Y and Liu Z 2023 Nat. Mater. 22 450 [8] Yue L, Liu C, Han S, Hong H, Wang Y, Liu Q, Qi J, Li Y, Wu D, Liu K, Wang E, Dong T and Wang N 2024 Sci. Adv. 10 eadn6216 [9] Autere A, Jussila H, Dai Y, Wang Y, Lipsanen H and Sun Z 2018 Adv. Mater. 30 1705963 [10] Kuo C T, Neumann M, Balamurugan K, Park H J, Kang S, Shiu H W, Kang J H, Hong B H, Han M, Noh T W and Park J G 2016 Sci. Rep. 6 20904 [11] Liu Q, Wang L, Fu Y, Zhang X, Huang L, Su H, Lin J, Chen X, Yu D, Cui X, Mei J W and Dai J F 2021 Phys. Rev. B 103 235411 [12] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433 [13] Grzeszczyk M, Novoselov K S and Koperski M 2022 Proc. Natl. Acad. Sci. USA 119 e2207074119 [14] Robert C, Lagarde D, Cadiz F, Wang G, Lassagne B, Amand T, Balocchi A, Renucci P, Tongay S, Urbaszek B and Marie X 2016 Phys. Rev. B 93 205423 [15] Yan Y, Yang J, Du J, Zhang X, Liu Y, Xia C andWei Z 2021 Adv. Mater. 33 2008761 [16] Paštika J, Oliveira F M, Mazánek V, Sofer Z and Gusmão R 2022 Small 18 2200355 [17] Qin X, Zhang H, Chen L, Chu Y, Zhang G, Wang Q, Wang L, Li Q, Li Y, Guo H and Liu C 2024 Appl. Phys. Lett. 124 073903 [18] Zhao Y, Ying T, Zhao L, Wu J, Pei C, Chen J, Deng J, Zhang Q, Gu L, Wang Q, CaoW, Li C, Zhu S, Zhang M, Yu N, Zhang L, Chen Y, Chen C Z, Yu T and Qi Y 2024 Adv. Mater. 36 2401118 [19] Haines C R S, Coak M J, Wildes A R, Lampronti G I, Liu C, Nahai- Williamson P, Hamidov H, Daisenberger D and Saxena S S 2018 Phys. Rev. Lett. 121 266801 [20] Gu Y, Zhang S and Zou X 2020 Sci. China Mater. 64 673 [21] Matsuoka T, Rao R, Susner M A, Conner B S, Zhang D and Mandrus D 2023 Phys. Rev. B 107 165125 [22] Sun H, Qiu L, Han Y, Yi E, Li J, Huo M, Huang C, Liu H, Li M, Wang W, Yao D, Frandsen B A, Shen B, Hou Y and Wang M 2023 Mater. Today Phys. 36 101188 [23] Harms N C, Kim H S, Clune A J, Smith K A, O’neal K R, Haglund A V, Mandrus D G, Liu Z, Haule K, Vanderbilt D and Musfeldt J L 2020 npj Quantum Mater. 5 56 [24] Fang S, Li Q, Li Z, Dong Q, Jing X, Li C, Li H, Liu B, Liu R and Liu B 2023 Mater. Res. Lett. 11 134 [25] Wang Y, Ying J, Zhou Z, Sun J,Wen T, Zhou Y, Li N, Zhang Q, Han F, Xiao Y, Chow P, Yang W, Struzhkin V V, Zhao Y and Mao H K 2018 Nat. Commun. 9 1914 [26] Karaca E and Errandonea D 2024 Results Phys. 57 107330 [27] Qi M, Chen W, Huang Y, Song H, Lv X, Wu M, Zhao W, Zhang L and Cui T 2024 J. Mater. Chem. C 12 5108 [28] Bernasconi M, Marra G L, Benedek G, Miglio L, Jouanne M, Julien C, Scagliotti M and Balkanski M 1988 Phys. Rev. B 38 12089 [29] Gusmão R, Sofer Z, Sedmidubský D, Huber Š and Pumera M 2017 ACS Catal. 7 8159 [30] Kishore A, Seksaria H, Arora A and De Sarkar A 2023 Phys. Chem. Chem. Phys. 25 20337 [31] Yun W S and Lee J D 2018 J. Phys. Chem. C 122 27917 [32] Chaix-Pluchery O, Sauer D and Kreisel J 2010 J. Phys.: Condens. Matter 22 165901 [33] Wang Y, Zhou Z, Wen T, Zhou Y, Li N, Han F, Xiao Y, Chow P, Sung J, Pravica M, Cornelius A L, Yang W and Zhao Y 2016 J. Am. Chem. Soc. 138 15751 [34] Wu Y, Zhang Z, Ma L, Liu T, Hao N, Lü W, Long M and Shan L 2023 Chin. Phys. B 32 107506 [35] Behera H and Mukhopadhyay G 2019 Int. J. Mod. Phys. B 33 1950281 [36] Miró P, Ghorbani-Asl M and Heine T 2014 Angew. Chem. Int. Ed. 53 3015 [37] Desai S B, Seol G, Kang J S, Fang H, Battaglia C, Kapadia R, Ager J W, Guo J and Javey A 2014 Nano Lett. 14 4592 [38] Zhang S, Niu W, Yang J, Kang D and Zhang S 2024 Phys. Lett. A 512 129590
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.