Stokes/anti-Stokes Raman spectroscopy of Al0.86Ga0.14N semiconductor alloy
Yuru Lin(林玉茹)1, Yu Li(李宇)1, Binbin Wu(吴彬彬)1, Jingyi Liu(刘静仪)1, Ruiang Guo(郭睿昂)1, Yangbin Wang(王扬斌)1, Qiwei Hu(胡启威)2,‡, and Li Lei(雷力)1,†
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 2 School of Physics and Electronic Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
Abstract The lattice dynamics of a high Al composition semiconductor alloy, AlGaN, in comparison with intrinsic GaN and AlN are studied by Stokes/anti-Stokes Raman spectroscopy in the temperature range of 85-823 K. The phonon anharmonic effect in AlGaN is found to be stronger than that in GaN, revealing low thermal conductivity in the semiconductor alloy. Multi-phonon coupling behavior is analyzed by both Stokes Raman and anti-Stokes Raman spectroscopy. It is interesting to find that the anti-Stokes scattering exhibits stronger three-phonon coupling than the Stokes scattering, which may be due to the fact that the anti-stokes scattering process is generated from an excited state and the scattered photons have higher energies. The Stokes/anti-Stokes temperature correction factor for Raman modes in AlGaN alloy are all smaller than those of the corresponding intrinsic modes in GaN and AlN. The reasons for the difference in can be attributed to three aspects, including the equipment setups, materials properties (the binding energy) and the coupling strength of Raman scattering and the sample.
Fund: The authors thank Prof. Filippo S. Boi for the helpful discussion. Project supported by the National Natural Science Foundation of China (Grant No. 12374013) and the Fundamental Research Funds for the Central Universities (Grant No. 2020SCUNL107).
Corresponding Authors:
Li Lei, Qiwei Hu
E-mail: lei@scu.edu.cn;hqw920861@163.com
Cite this article:
Yuru Lin(林玉茹), Yu Li(李宇), Binbin Wu(吴彬彬), Jingyi Liu(刘静仪), Ruiang Guo(郭睿昂), Yangbin Wang(王扬斌), Qiwei Hu(胡启威), and Li Lei(雷力) Stokes/anti-Stokes Raman spectroscopy of Al0.86Ga0.14N semiconductor alloy 2025 Chin. Phys. B 34 057802
[1] Jain S C, Willander M, Narayan J and Overstraeten R V 2000 J. Appl. Phys. 87 965 [2] Figge S, Kröncke H, Hommel D and Epelbaum B M 2009 Appl. Phys. Lett. 94 101915 [3] Amano H, Sawaki N, Akasaki I and Toyoda Y 1986 Appl. Phys. Lett. 48 353 [4] Chang I F and Mitra S S 1971 Adv. Phys. 20 359 [5] Klochikhin A A, Davydov V Y, Goncharuk I N, Smirnov A N, Nikolaev A E, Baidakova M V, Aderhold J, Graul J, Stemmer J and Semchinova O 2000 Phys. Rev. B 62 2522 [6] Correia M R, Pereira S, Pereira E, Frandon J and Alves E 2003 Appl. Phys. Lett. 83 4761 [7] GebickiW, Strzeszewski J, Kamler G, Szyszko T and Podsiadło S 2000 Appl. Phys. Lett. 76 3870 [8] Schubert M, Kasic A, Tiwald T E, Off J, Kuhn B and Scholz F 1999 MRS Internet J. Nitride Semicond. Res. 4 e11 [9] Pomeroy J W, Kuball M, Uren M J and Martin T 2008 Phys. Status Solidi B 245 910 [10] Link A, Bitzer K, LimmerW, Sauer R, Kirchner C, Schwegler V, Kamp M, Ebling D G and Benz K W 1999 J. Appl. Phys. 86 6256 [11] Pu X D, Chen J, ShenWZ, Ogawa H and Guo Q X 2005 J. Appl. Phys. 98 033527 [12] Guo L L, Zhang Y H and Shen W Z 2006 Appl. Phys. Lett. 89 161920 [13] Demangeot F, Groenen J, Frandon J, Renucci M A, Briot O, Clur S and Aulombard R L 1998 Appl. Phys. Lett. 72 2674 [14] Wieser N, Ambacher O, Angerer H, Dimitrov R, Stutzmann M, Stritzker B and Lindner J K N 1999 Phys. Status Solidi B 216 807 [15] Yu S, Kim K W, Bergman L, Dutta M, Stroscio M A and Zavada J M 1998 Phys. Rev. B 58 15283 [16] Davydov V Yu, Goncharuk I N, Smirnov A N, Nikolaev A E, Lundin W V, Usikov A S, Klochikhin A A, Aderhold J, Graul J, Semchinova O and Harima H 2002 Phys. Rev. B 65 125203 [17] Kosemura D, Sodan V and De Wolf I 2017 J. Appl. Phys. 121 035702 [18] Liu Y, Yang X, Chen D, Lu H, Zhang R and Zheng Y 2015 Adv. Condens. Matter Phys. 2015 1 [19] Chen D J, Shen B, Wu X L, Shen J C, Xu F J, Zhang K X, Zhang R, Jiang R L, Shi Y and Zheng Y D 2005 Appl. Phys. A 80 1729 [20] Tao Y, Zhang L and Lei L 2022 Phys. Rev. B 105 174102 [21] Liu J, Tao Y, Fan C, Wu B, Tang Q and Lei L 2022 Chin. Phys. B 31 037801 [22] Zhao M, Wu B, Liu J and Lei L 2023 Chin. Phys. B 32 090704 [23] Gorczyca I, Christensen N E, Peltzer Y Blancá E L and Rodriguez C O 1995 Phys. Rev. B 51 11936 [24] Davydov V Yu, Kitaev Yu E, Goncharuk I N, Smirnov A N, Graul J, Semchinova O, Uffmann D, Smirnov M B, Mirgorodsky A P and Evarestov R A 1998 Phys. Rev. B 58 12899 [25] Cantarero A, Cros A, Garro N, Gómez-GómezMI, García A, De Lima M M, Daudin B, Rizzi A, Denker C and Malindretos J 2011 Ann. Phys. (Berlin) 523 51 [26] Menéndez J and Cardona M 1984 Phys. Rev. B 29 2051 [27] LiWS, Shen Z X, Feng Z C and Chua S J 2000 J. Appl. Phys. 87 3332 [28] Wang D H, Xu T H and Song H Y Acta Phys. Sin. 65 130702 (in Chinese) [29] Cuscó R, Gil B, Cassabois G and Artús L 2016 Phys. Rev. B 94 155435 [30] Peña-Alvarez M, Dalladay-Simpson P, Liu X D, Afonina V, Zhang H C, Howie R T and Gregoryanz E 2019 J. Appl. Phys. 125 025901 [31] Goncharov A F, Crowhurst J C, Struzhkin V V and Hemley R J 2008 Phys. Rev. Lett. 101 095502 [32] Santoro M, Lin J, Mao H and Hemley R J 2004 J. Chem. Phys. 121 2780 [33] Kip B J and Meier R J 1990 Appl. Spectro. 44 707 [34] Lin J F, Santoro M, Struzhkin V V, Mao H and Hemley R J 2004 Rev. Sci. Instrum. 75 3302
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.