CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
|
|
|
Identifying the effect of photo-generated carriers on the phonons in rutile TiO2 through Raman spectroscopy |
Zheng Wang(王征), Min Liao(廖敏), Guihua Wang(王桂花), and Meng Zhang(张梦)† |
School of Electronic and Information Engineering, Beihang University, Beijing 100191, China |
|
|
Abstract Investigating lattice vibrations through Raman spectroscopy is a crucial method for studying crystalline materials. Carriers can interact with lattices and influence lattice vibrations; thus, it is feasible to study the effect of photo-generated carriers on phonons by analyzing changes in the Raman spectra of semiconductors. Rutile is one of the predominant crystalline phases of TiO$_{2}$, which is a widely utilized metal oxide semiconductor. In this work, rutile TiO$_{2}$ is coated on a thinned optical fiber to concentrate ultraviolet light energy within the material, thereby enhancing the generation of carriers and amplifying the changes in the Raman spectra. A Raman detection laser with a wavelength of 532 nm is utilized to collect the Raman spectra of rutile TiO$_{2}$ during irradiation. Using this setup, the impact of photo-generated carriers on the phonons corresponding to Raman vibrational modes is researched. The localization and non-radiative recombination of photo-generated carriers contribute to a reduction in both the frequencies and lifetimes of phonons. This work provides a novel approach to researching the effect of carriers on phonons.
|
Received: 27 June 2024
Revised: 06 August 2024
Accepted manuscript online: 27 August 2024
|
PACS:
|
78.56.Cd
|
(Photocarrier radiometry)
|
|
74.25.Kc
|
(Phonons)
|
|
74.25.nd
|
(Raman and optical spectroscopy)
|
|
61.82.Fk
|
(Semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52122008, 51978024, and 52370003) and the Science and Technology and Innovation Commission of Shen Zhen Municipality (Grant No. JCYJ20200109105212568). |
Corresponding Authors:
Meng Zhang
E-mail: mengzhang10@buaa.edu.cn
|
Cite this article:
Zheng Wang(王征), Min Liao(廖敏), Guihua Wang(王桂花), and Meng Zhang(张梦) Identifying the effect of photo-generated carriers on the phonons in rutile TiO2 through Raman spectroscopy 2024 Chin. Phys. B 33 117802
|
[1] Zhang X, Tan Q H, Wu J B, Shi W and Tan P H 2016 Nanoscale 8 6435 [2] Hu H T, Flöry T, Stummer V, Pugzlys A, Zeiler M, Xie X H, Zheltikov A and Baltuška A 2024 Light-Sci. Appl. 13 61 [3] Kerdoncuff H, Lassen M and Petersen J C 2019 Opt. Lett. 44 5057 [4] Mondal W R, Evlyukhin E, Howard S A, Paez G J, Paik H, Schlom D G, Piper L F and Lee W C 2021 Phys. Rev. B 103 214107 [5] Kolesnichenko P V, Tollerud J O and Davis J A 2019 APL Photonics 4 056102 [6] Chen D J, Cheng Y L, Zhou N, Chen P, Wang Y P, Li K, Huo S H, Cheng P F, Peng P, Zhang R C, Wang L, Liu H, Liu Y H and Ruan R 2020 J. Clean. Prod. 268 121725 [7] Ni M, Leung M K, Leung D Y and Sumathy K 2007 Renew. Sust. Energ. Rev. 11 401 [8] Junkar I, Kulkarni M, Drašler B, Rugelj N, Mazare N, Flašker A, Drobne D, Humpolícek P, Resnik M, Schmuki P, Mozetič M and Iglič A 2016 Bioelectrochemistry 109 79 [9] Lee J W, Lee T Y, Yoo P J, Grätzel M, Mhaisalkar S and Park N G 2014 J. Mater. Chem. A 2 9251 [10] Xu Z F, Tong C J, Si R T, Teobaldi G and Liu L M 2022 J. Phys. Chem. Lett. 13 857 [11] Xu Y Z, Wang Z, Chen H L and Weng Y X 2024 J. Phys. Chem. C 128 2096 [12] deQuilettes D W, Frohna K, Emin D, Kirchartz T, Bulovic V, Ginger D S and Stranks S D 2019 Chem. Rev. 119 11007 [13] Sahoo S, Ghorai G, Ghosh K, Das B, Sikdar M K and Sahoo P K 2021 AIP Adv. 11 105013 [14] Li Z L, Li Z Q, Zuo C L and Fang X S 2022 Adv. Mater. 34 2109083 [15] Nakata K and Fujishima A 2012 J. Photoch. Photobio. C 13 169 [16] Djokić V R, Marinković A D, Petrović R D, Ersen O, Zafeiratos S, Mitrić M, Ophus C, Radmilović V R and Janaćković D T 2020 ACS Appl. Mater. Interfaces 12 33058 [17] Mitev P D, Hermansson K, Montanari B and Refson K 2010 Phys. Rev. B 81 134303 [18] Abdullah S A, Sahdan M Z, Nayan N, Embong Z, Hak C R and Adriyanto F 2020 Mater. Lett. 263 127143 [19] Parkin W M, Balan A, Liang L, Das P M, Lamparski M, Naylor C H, Rodríguez-Manzo J A, Johnson A T, Meunier V and Drndić M 2016 ACS Nano 10 4134 [20] Rani C, Pathak D K, Tanwar M, Kandpal S, Ghosh T, Maximov M Y and Kumar R 2022 Mater. Adv. 3 1602 [21] Wu Y N, Saidi W A, Ohodnicki P, Chorpening B and Duan Y 2018 J. Phys. Chem. C 122 22642 [22] Swamy V, Muddle B C and Dai Q 2006 Appl. Phys. Lett. 89 163118 [23] Lukačević I, Gupta S K, Jha P K and Kirin D 2012 Mater. Chem. Phys. 137 282 [24] Lan T, Tang X L and Fultz B 2012 Phys. Rev. B 85 094305 [25] Zhang Y L, Harris C X, Wallenmeyer P, Murowchick J and Chen X B 2013 J. Phys. Chem. C 117 24015 [26] Huang Y L, Lee Y T, Yeh V and Cheng C L 2009 J. Lumin. 129 1762 [27] Machon D, Le Bail N, Hermet P, Cornier T, Daniele S and Vignoli S 2019 J. Phys. Chem. C 123 1948 [28] Liu Y J, Y. Zhang, Lei H X, Song J W, H. Chen and Li B J 2012 Opt. Express 20 19404 [29] Chauhan M and Singh V K 2023 J. Optics 52 2285 [30] Di Valentin C and Selloni A 2011 J. Phys. Chem. Lett. 2 2223 [31] Cheng J, VandeVondele V and Sprik M 2014 J. Phys. Chem. C 118 5437 [32] Wang D, Wang H F and Hu P 2015 Phys. Chem. Chem. Phys. 17 1549 [33] Wu S F, Chen C, Wang J M, Xiao J R and Peng T Y 2018 ACS Appl. Energy Mater. 1 1649 [34] Landmann M, Rauls E and Schmidt W G 2012 J. Phys.-Condens. Matter 24 195503 [35] Sarina S, Waclawik E R and Zhu H Y 2013 Green Chemistry 15 1814 [36] Sezen H, Buchholz M, Nefedov A, Natzeck C, Heissler S, Di Valentin C and Wöll C 2014 Sci. Rep. 4 3808 [37] Deskins N A and Dupuis M 2009 J. Phys. Chem. C 113 346 [38] Hassen F, Zaaboub Z, Bouhlel M, Naffouti M, Maaref H and Garni N M 2015 Thin Solid Films 594 168 [39] Dimitropoulos D, Jhaveri R, Claps R, Woo J C and Jalali B 2005 Appl. Phys. Lett. 86 071115 [40] Sunny A, Thirumurugan A and Balasubramanian K 2020 Phys. Chem. Chem. Phys. 22 2001 [41] Zhang L L, Chu W B, Zhao C Y, Zheng Q J, Prezhdo O V and Zhao J 2021 J. Phys. Chem. Lett. 12 2191 [42] Shen S Y, Jiang X X, Zheng Y S, Xue X X, Feng Y X, Zeng J and Chen K Q 2023 Phys. Chem. Chem. Phys. 25 7519 [43] De Lile J R, Bahadoran A, Zhou S and Zhang J J 2022 Adv. Theor. Simul. 5 2100244 [44] You P W, Chen D Q, Liu X B, Zhang C, Selloni A and Meng S 2024 Nat. Mater. 23 1100 [45] Beechem T and Graham S 2008 J. Appl. Phys. 103 093507 [46] Wu M C, Liao H C, Cho Y C, Tóth G, Chen Y F, Su W F and Kordás K 2013 J. Mater. Chem. A 1 5715 [47] Mao J, An X Q, Gu Z N, Zhou J, Liu H J and Qu J H 2020 Environ. Sci. Technol. 54 10323 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|