Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 066801    DOI: 10.1088/1674-1056/ad39d5
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Influences of divalent ion substitution on the magnetic and dielectric properties of W-type barium ferrite

Shiyue He(何诗悦)1,2,3, Ruoshui Liu(刘若水)3, Xujie Liu(刘煦婕)3, Xianping Ye(叶先平)3, Lichen Wang(王利晨)3,†, and Baogen Shen(沈保根)1,2,3,4,‡
1 School of Rare Earths, University of Science and Technology of China, Hefei 230026, China;
2 Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, China;
3 Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
4 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Saturation magnetization, magneto-crystalline anisotropy field, and dielectric properties are closely related to microwave devices applied at different frequencies. For regulating the magnetic and dielectric properties of W-type barium ferrites, single-phase Ba$Me_{2}$Fe$_{16}$O$_{27}$ ($Me= {\rm Fe}$, Mn, Zn, Ni, Co) with different \textit{Me} ions were synthesized by the high-temperature solid-state method. The saturation magnetization ($M_{\rm s}$) range from 47.77emu/g to 95.34emu/g and the magnetic anisotropy field ($H_{\rm a}$) range from 10700.60Oe (1Oe=79.5775A$\cdot$m$^{-1}$) to 13739.57Oe, depending on the type of cation substitution in the hexagonal lattice. The dielectric permittivity and dielectric loss decrease with increasing frequency of the AC electric field in the low-frequency region, while they almost remain constant in the high-frequency region. The characteristics of easy regulation and preparation make it a potential candidate for use in microwave device applications.
Keywords:  W-type hexaferrite      Raman spectra      magnetic properties      dielectric properties  
Received:  17 February 2024      Revised:  03 April 2024      Accepted manuscript online:  03 April 2024
PACS:  68.55.Ln (Defects and impurities: doping, implantation, distribution, concentration, etc.)  
  75.30.Gw (Magnetic anisotropy)  
  75.47.Lx (Magnetic oxides)  
  87.64.kp (Raman)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52088101), the Kunpeng Plan of Zhejiang Province, and Ningbo Top Talent Program.
Corresponding Authors:  Lichen Wang, Baogen Shen     E-mail:  wanglichen@nimte.ac.cn;shenbaogen@nimte.ac.cn

Cite this article: 

Shiyue He(何诗悦), Ruoshui Liu(刘若水), Xujie Liu(刘煦婕), Xianping Ye(叶先平), Lichen Wang(王利晨), and Baogen Shen(沈保根) Influences of divalent ion substitution on the magnetic and dielectric properties of W-type barium ferrite 2024 Chin. Phys. B 33 066801

[1] Rathenau G, Smit J and Stuyts A 1952 Philips Technical Review 13 194
[2] Pullar R C 2012 Prog. Mater. Sci. 57 1191
[3] Ahmad M, Grössinger R, Kriegisch M, Kubel F and Rana M 2012 Curr. Appl. Phys. 12 1413
[4] Akhtar M N, Javed S, Ahmad M, Sulong A and Khan M A 2020 Ceramics International 46 7842
[5] Carvalheiras J, Novais R M, Mohseni F, Amaral J S, Seabra M P, Labrincha J A and Pullar R C 2020 Ceramics International 46 5757
[6] Moon K S and Kang Y M 2017 Ceramics International 43 14309
[7] Turchenko V, Bondyakov A, Trukhanov S, Fina I, Korovushkin V, Balasoiu M, Polosan S, Bozzo B, Lupu N and Trukhanov A 2023 J. Alloys Compd. 931 167433
[8] Özgür Ü, Alivov Y and Morkoç H 2009 J. Mater. Sci.: Mater. Electron. 20 789
[9] Iida K, Minachi Y, Masuzawa K, Kawakami M, Nishio H and Taguchi H 1999 J. Magn. Soc. Jpn. 23 1093
[10] Mørch M I, Ahlburg J V, Saura-Muzqúiz M, Eikeland A Z and Christensen M 2019 IUCrJ 6 492
[11] Zhang J 2019 J. Mater. Sci.: Mater. Electron. 30 8437
[12] Rehman A u, Shaukat S F, Akhtar M N and Ahmad M 2019 Ceramics International 45 24202
[13] Albanese G, Carbucicchio M and Asti G 1976 Appl. Phys. 11 81
[14] Mohammed J, Suleiman A B, Tchouank Tekou Carol T, Hafeez H Y, Sharma J, Maji P K, Kumar S G and Srivastava A K 2018 Chin. Phys. B 27 128104
[15] Ali H T, Ramzan M, Arshad M I, Morley N A, Abbas M H, Yusuf M, Rehman Ur, Mahmood K, Ali A, Amin N and Ajaz-un-Nabi M 2022 Chin. Phys. B 31 027502
[16] Yang X, Jin Q, Chen Z, Li Q and Liu B 2014 J. Magn. Magn. Mater. 367 64
[17] You J H and Yoo S I 2018 J. Alloys Compd. 763 459
[18] Sun M, Zheng J, Liang L, Sun K, Song Y and Zhao S 2015 J. Mater. Sci.: Mater. Electron. 26 9970
[19] Ahmad M, Ali I, Grössinger R, Kriegisch M, Kubel F and Rana M 2013 J. Alloys Compd. 579 57
[20] Attia S, El Ata A A and El Kony D 2004 J. Magn. Magn. Mater. 270 142
[21] Tang J, Li D, Li Y, Liu C and Zeng J 2021 J. Electron. Mater. 51 141
[22] Tahir W, Khan M A, Rasool R T, Dabagh S, Gulbadan S, Majeed A, Albalawi H, Bouzgarrou S and Mahmood K 2023 Physica B 659 414872
[23] Tahir W, Khan M A, Gulbadan S, Majeed A and Mahmood K 2021 Journal of Taibah University for Science 15 1196
[24] Iqbal A, Khan M A, Rasool R T, Gulbadan S, Algaradah M M, Ashraf G A, Alshahrani T, Abd-Rabboh H S M, Akhtar M N and Irfan M 2024 Ceramics International 50 4446
[25] Tahir W, Khan M A, Rasool R T, Gulbadan S, Majeed A and Nasar G 2023 J. Mater. Sci.: Mater. Electron. 34 1812
[26] Yar I M, Irfan M, Naheed F, Akhtar M N, Rasool R T, Ashraf G A, Gulbadan S and Khan M A 2024 Appl. Phys. A 130 87
[27] Groessinger R 1981 Phys. Status Solidi (a) 66 665
[28] Collomb A, Lambert-Andron B, Boucherle J and Samaras D 1986 Phys. Status Solidi (a) 96 385
[29] Collomb A, Wolfers P and Obradors X 1986 J. Magn. Magn. Mater. 62 57
[30] Akhtar M N, Javed S, Ahmad M, Sulong A B and Khan M A 2020 Ceramics International 46 7842
[31] Collomb A and Valletregi M 1987 Materials Research Bulletin 22 753
[32] Knudsen C G, Mørch M I and Christensen M 2023 Dalton Transactions 52 281
[33] Su Z J, Chen Y J, Hu B L, Sokolov A S, Bennett S, Burns L, Xing X and Harris V G 2013 J. Appl. Phys. 113 17B305
[34] Cao X, Guo X and Meng J 2018 Journal of Sol-Gel Science and Technology 85 149
[35] Polley K, Dey S K, Kumar A and Bera J 2024 J. Mater. Sci.: Mater. Electron. 35 269
[36] Li J and Sun X 2023 Materials 16 5897
[37] Iqbal M A, Tahir W, Murtaza Rai G, Noor N A, Ali S and Kubra K T 2012 Ceramics International 38 3757
[38] Ali A, Grössinger R, Imran M, Khan M A, Elahi A, Akhtar M N, Mustafa G, Khan M A, Ullah H, Murtaza G and Ahmad M 2017 J. Electron. Mater. 46 903
[39] Kharabe R G, Devan R S, Kanamadi C M and Chougule B K 2006 Smart Materials and Structures 15 N36
[40] Rehman A u, Shaukat S F, Haidyrah A S, Akhtar M N and Ahmad M 2021 Journal of Electroceramics 46 93
[41] Zhu J, Tseng K J and Foo C F 2000 IEEE Trans. Magn. 36 3408
[1] Relationship between disorder, magnetism and band topology in Mn(Sb1-xBix)2Te4 single crystals
Ming Xi(席明) and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(6): 067503.
[2] Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film
Fengguo Fan(范凤国) and Lintong Duan(段林彤). Chin. Phys. B, 2024, 33(3): 037502.
[3] Effect of In doping on the evolution of microstructure, magnetic properties and corrosion resistance of NdFeB magnets
Yuhao Li(李豫豪), Xiaodong Fan(范晓东), Zhi Jia(贾智), Lu Fan(范璐), Guangfei Ding(丁广飞), Xincai Liu(刘新才), Shuai Guo(郭帅), Bo Zheng(郑波), Shuai Cao(曹帅), Renjie Chen(陈仁杰), and Aru Yan(闫阿儒). Chin. Phys. B, 2024, 33(3): 037508.
[4] Tuning magneto-dielectric properties of Co2Z ferrites via Gd doping for high-frequency applications
Jian Wu(武剑), Bing Lu(卢冰), Ying Zhang(张颖), Yixin Chen(陈一鑫), Kai Sun(孙凯), Daming Chen(陈大明), Qiang Li(李强), Yingli Liu(刘颖力), and Jie Li(李颉). Chin. Phys. B, 2023, 32(9): 097501.
[5] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagnetic properties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[6] Analysis on the cation distribution of MgxNi1-xFe2O4(x=0, 0.25, 0.5, 0.75, 1) using Mössbauer spectroscopy and magnetic measurement
Shiyu Xu(徐诗语), Jiajun Mo(莫家俊), Lebin Liu(刘乐彬), and Min Liu(刘 敏). Chin. Phys. B, 2023, 32(12): 127507.
[7] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[8] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[9] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[10] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[11] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[12] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[13] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[14] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[15] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
No Suggested Reading articles found!