Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 086401    DOI: 10.1088/1674-1056/add1c0
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Quantum phase transitions with eigen microstate approach in one-dimensional transverse-field Ising model

Zhongshan Su(苏中山)1, Yuan Jiang(江源)1, Gaoke Hu(胡高科)2,1, Yue-Hua Su(苏跃华)3, Liangsheng Li(李粮生)4, Wen-Long You(尤文龙)2,†, Maoxin Liu(刘卯鑫)1,‡, and Xiaosong Chen(陈晓松)1,§
1 School of Systems Science & Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China;
2 College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
3 Department of Physics, Yantai University, Yantai 264005, China;
4 National Key Laboratory of Scattering and Radiation, Beijing 100854, China
Abstract  We propose an eigen microstate approach (EMA) for analyzing quantum phase transitions in quantum many-body systems, introducing a novel framework that does not require prior knowledge of an order parameter. Using the transverse-field Ising model (TFIM) as a case study, we demonstrate the effectiveness of EMA by identifying key features of the phase transition through the scaling behavior of eigenvalues and the structure of associated eigen microstates. Our results reveal substantial changes in the ground state of the TFIM as it undergoes a phase transition, as reflected in the behavior of specific components $\xi^{(k)}_i$ within the eigen microstates. This method is expected to be applicable to other quantum systems where predefining an order parameter is challenging.
Keywords:  eigen microstate approach      quantum phase transition      transverse-field Ising model  
Received:  29 March 2025      Revised:  28 April 2025      Accepted manuscript online:  29 April 2025
PACS:  64.60.De (Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))  
  05.30.Rt (Quantum phase transitions)  
  75.40.Mg (Numerical simulation studies)  
  89.75.Da (Systems obeying scaling laws)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12475033, 12135003, 12174194, and 12405032) and the National Key Research and Development Program of China (Grant No. 2023YFE0109000). Maoxin Liu is supported by the Fundamental Research Funds for the Central Universities. Gaoke Hu acknowledges financial support from the China Postdoctoral Science Foundation (Grant No. 2023M730299).
Corresponding Authors:  Wen-Long You, Maoxin Liu, Xiaosong Chen     E-mail:  wlyou@nuaa.edu.cn;mxliu@bnu.edu.cn;chenxs@bnu.edu.cn

Cite this article: 

Zhongshan Su(苏中山), Yuan Jiang(江源), Gaoke Hu(胡高科), Yue-Hua Su(苏跃华), Liangsheng Li(李粮生), Wen-Long You(尤文龙), Maoxin Liu(刘卯鑫), and Xiaosong Chen(陈晓松) Quantum phase transitions with eigen microstate approach in one-dimensional transverse-field Ising model 2025 Chin. Phys. B 34 086401

[1] Sachdev S 2011 Quantum Phase Transitions 2nd Edn. (Cambridge university press)
[2] Sondhi S L, Girvin S M, Carini J P and Shahar D 1997 Rev. Mod. Phys. 69 315
[3] Yuan H Q, Grosche F M, Deppe M, Geibel C, Sparn G and Steglich F 2003 Science 302 2104
[4] Brando M, Belitz D, Grosche F M and Kirkpatrick T R 2016 Rev. Mod. Phys. 88 025006
[5] Nielsen, M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[6] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[7] Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608
[8] Landau L D 1937 Zh. Eksp. Teor. Fiz. 11 627
[9] Landau L D, Lifshitz E M and Pitaevskii E M 1980 Statistical Physics Part 2: theory of the condensed state, Vol. 9 (Oxford: Butterworth– Heinemann)
[10] Aranson I S and Kramer L 2002 Rev. Mod. Phys. 74 99
[11] Sachdev S 2000 Science 288 475
[12] Sachdev S 2008 Nat. Phys. 4 173
[13] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902
[14] Senthil T, Vishwanath A, Balents L, Sachdev S and Fisher M P A 2004 Science 303 1490
[15] Berezinsky V L 1972 Sov. Phys. JETP 34 610
[16] Kosterlitz J M and Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181
[17] Shimizu Y, Miyagawa K, Kanoda K, Maesato M and Saito G 2003 Phys. Rev. Lett. 91 107001
[18] Yan S, Huse D A and White S R 2011 Science 332 1173
[19] Isakov S V, Hastings M B and Melko R G 2011 Nat. Phys. 7 772
[20] Shao H, Guo W and Sandvik A W 2016 Science 352 213
[21] Senthil T, Balents L, Sachdev S, Vishwanath A and Fisher M P A 2004 Phys. Rev. B 70 144407
[22] Ma X, Xie F, Chen X S, Liu N and Liang R Z 2024 Environ. Res. Lett. 19 084019
[23] Hu G K, Liu T, LiuMX, ChenWand Chen X S 2019 Sci. China- Phys. Mech. Astron. 62 990511
[24] Zhang X, Hu G K, Zhang Y W, Li X T and Chen X S 2018 Sci. China- Phys. Mech. Astron. 61 1
[25] Liu T, Hu G K, Dong J Q, Fan J F, Liu M X and Chen X S 2022 Chin. Phys. Lett. 39 080503
[26] Chen X J, Ying N, Chen D, Zhang Y W, Lu B, Fan J F and Chen X S 2021 Chaos 31 071102
[27] Li X, Xue T T, Sun Y, Fan J F, Li H, Liu M X, Han Z G, Di Z R and Chen X S 2021 Chin. Phys. B 30 128703
[28] Sun Y, Hu G K, Zhang Y W, Lu B, Lu Z H, Fan J F, Li X, Deng Q and Chen X S 2021 Commun. Theor. Phys. 73 065603
[29] Zheng Z G, Xu C, Fan J F, Liu M X and Chen X S 2024 Chaos 34 022101
[30] Chen X, Ren H D, Tang Z H, Zhou K, Zhou L Q, Zuo Z T, Cui X H, Chen X S, Liu Z H, He Y and Liao X H 2023 Commun. Biol. 6 892
[31] Wang X, Fan H, Chen X S, Xie Y R and Wang H Y 2024 Ecol. Indic. 159 111689
[32] Gibbs J W 1902 Elementary Principles in Statistical Mechanics (New York: Charles Scribner’s Sons)
[33] Hu G K, Liu M X and Chen X S 2023 Physica A 630 129210
[34] Wu N 2020 Phys. Rev. E 101 042108
[35] Chakrabarti B K, Dutta A and Sen P 1996 Quantum Ising Phases and Transitions in Transverse Ising Models (Lecture Notes in Physics Monograph m41) (Heidelberg: Springer)
[36] Pfeuty P 1970 Ann. Phys. 57 79
[37] Suzuki M 1976 Prog. Theor. Phys. 56 1454
[38] Barouch E, McCoy B M and Dresden M 1970 Phys. Rev. A 2 1075
[39] Blume M 1969 J. Appl. Phys. 40 915
[40] Edwards S F and Anderson P W 1975 J. Phys. F: Met. Phys. 5 965
[41] Aubry S 1980 Ferroelectrics 24 53
[42] Fisher D S 1994 Phys. Rev. B 50 3799
[43] Fisher D S, Fisher M P A and Huse D A 1991 Phys. Rev. B 43 130
[44] Coldea R, Tennant D A, Wheeler E M,Wawrzynska E, Prabhakaran D, Telling M, Habicht K, Smeibidl P and Kiefer K 2010 Science 327 177
[45] Cheuk L W, Nichols M A, Okan M, Gersdorf T, Ramasesh V V, Bakr W S, Lompe T and Zwierlein M W 2015 Phys. Rev. Lett. 114 193001
[46] Zhang Y S and Wang L 2022 Chin. Phys. B 31 110205
[47] Mok K, Kovács G J, McCord J, Li L, Helm M and Schmidt H 2011 Phys. Rev. B 84 094413
[48] Zenkyu R, Yuhara J, Matsui T, Zaman S S, SchmidMand Varga P 2012 Phys. Rev. B 86 115422
[49] Zhang L and Ding C X 2023 Chin. Phys. Lett. 40 010501
[50] Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504
[51] Calabrese P and Lefevre A 2008 Phys. Rev. A 78 032329
[52] Chiara G D, Lepori L, Lewenstein M and Sanpera A 2012 Phys. Rev. Lett. 109 237208
[53] Liu G H, Li W, You W L, Su G and Tian G S 2013 Euro. Lett. 101 57001
[54] White S R 1992 Phys. Rev. Lett. 69 2863
[55] Sandvik A W and Kurkijärvi, Juhani 1991 Phys. Rev. B 43 5950
[1] Detecting the quantum phase transition from the perspective of quantum information in the Aubry-André model
Geng-Biao Wei(韦庚彪), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2024, 33(7): 070301.
[2] Floquet dynamical quantum phase transitions in transverse XY spin chains under periodic kickings
Li-Na Luan(栾丽娜), Mei-Yu Zhang(张镁玉), and Lin-Cheng Wang(王林成). Chin. Phys. B, 2023, 32(9): 090302.
[3] Phase transition in bilayer quantum Hall system with opposite magnetic field
Ke Yang(杨珂). Chin. Phys. B, 2023, 32(9): 097303.
[4] First-order quantum phase transition and entanglement in the Jaynes-Cummings model with a squeezed light
Chun-Qi Tang(汤椿琦) and Li-Tuo Shen(沈利托). Chin. Phys. B, 2023, 32(7): 070303.
[5] Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model
Yue Li(李玥), Panpan Fang(房盼盼), Zhe Wang(王哲), Panpan Zhang(张盼盼), Yuliang Xu(徐玉良), and Xiangmu Kong(孔祥木). Chin. Phys. B, 2023, 32(10): 100303.
[6] Long-range interacting Stark many-body probes with super-Heisenberg precision
Rozhin Yousefjani, Xingjian He(何行健), and Abolfazl Bayat. Chin. Phys. B, 2023, 32(10): 100313.
[7] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[8] Dynamical quantum phase transition in XY chains with the Dzyaloshinskii-Moriya and XZY-YZX three-site interactions
Kaiyuan Cao(曹凯源), Ming Zhong(钟鸣), and Peiqing Tong(童培庆). Chin. Phys. B, 2022, 31(6): 060505.
[9] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[10] Quantum phase transitions in CePdAl probed by ultrasonic and thermoelectric measurements
Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Jiahao Zhang(张佳浩), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117103.
[11] Ferromagnetic Heisenberg spin chain in a resonator
Yusong Cao(曹雨松), Junpeng Cao(曹俊鹏), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(9): 090506.
[12] Ground-state phase diagram of the dimerizedspin-1/2 two-leg ladder
Cong Fu(傅聪), Hui Zhao(赵晖), Yu-Guang Chen(陈宇光), and Yong-Hong Yan(鄢永红). Chin. Phys. B, 2021, 30(8): 087501.
[13] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[14] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[15] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
No Suggested Reading articles found!