Layer-dependent structural stability and electronic properties of CrPS4 under high pressure
Jian Zhu(朱健)1, Dengman Feng(冯登满)1, Liangyu Wang(王亮予)1, Liang Li(李亮)1, Fangfei Li(李芳菲)1, Qiang Zhou(周强)1,†, and Yalan Yan(闫雅兰)2,‡
1 Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2 Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Jilin Engineering Normal University, Changchun 130052, China
Abstract Interlayer coupling plays an important role in determining the lattice vibrations and optical properties of two-dimensional (2D) materials. By applying pressure, the interlayer coupling in 2D materials can be effectively modified, thereby tuning their physical properties. In this study, we systematically investigated the crystal structure and electronic structure of bulk and ultrathin CrPS by combining in situ high-pressure Raman and photoluminescence (PL) spectroscopy measurements. The results of high-pressure Raman spectroscopy indicate that, with an increase in layer number, the pressure at which the A and B Raman peaks merge into a single peak increases, meanwhile, a delay in fluorescence quenching is observed. These can be attributed to the much harder structural distortion or even phase transitions, and the electronic phase transition of CrPS with stronger interlayer coupling in thicker layer. The current structural and optical investigation under pressure will provide a firm basis for future studies and applications of atomically thin magnetic semiconductors, which hold potential for the development of strain-sensitive and optical-sensing devices.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074141, 12274168, and 12104180) and the National Major Science Facility Synergetic Extreme Condition User Facility Achievement Transformation Platform Construction (Grant No. 2021FGWCXNLJSKJ01).
Corresponding Authors:
Yalan Yan
E-mail: yanyalan15@163.com
Cite this article:
Jian Zhu(朱健), Dengman Feng(冯登满), Liangyu Wang(王亮予), Liang Li(李亮), Fangfei Li(李芳菲), Qiang Zhou(周强), and Yalan Yan(闫雅兰) Layer-dependent structural stability and electronic properties of CrPS4 under high pressure 2025 Chin. Phys. B 34 066102
[1] Liu F 2021 Progress in Surface Science 96 100626 [2] Kim J H, Jeong J H, Kim N, Joshi R and Lee G H 2018 J. Phys. D: Appl. Phys. 52 083001 [3] Wang H, Yu L, Lee Y H, Shi Y, Hsu A, Chin M L, Li L J, Dubey M, Kong J and Palacios T 2012 Nano Lett. 12 4674 [4] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 [5] Lee C H, Lee G H, van der Zande A M, et al. 2014 Nat. Nanotechnol. 9 676 [6] Zhang Y, Dong H, Tang Q, Ferdous S, Liu F, Mannsfeld S C, Hu W and Briseno A L 2010 J. Am. Chem. Soc. 132 11580 [7] Pradhan N R, Rhodes D, Xin Y, Memaran S, Bhaskaran L, Siddiq M, Hill S, Ajayan P M and Balicas L 2014 ACS Nano 8 7923 [8] Lee J, Ko T Y, Kim J H, Bark H, Kang B, Jung S G, Park T, Lee Z, Ryu S and Lee C 2017 ACS Nano 11 10935 [9] Sivadas N, Daniels M W, Swendsen R H, Okamoto S and Xiao D 2015 Phys. Rev. B 91 235425 [10] Gusmoo R, Sofer Z and Pumera M 2019 Advanced Functional Materials 29 1970008 [11] Ouahrani T, Daouli A, Badawi M, Bendaoudi L, Morales-Garcia A and Errandonea D 2022 Dalton Transactions 51 9689 [12] Louisy A, Ouvrard G, Schleich D M and Brec R 1978 Solid State Commun. 28 61 [13] Zhuang H L and Zhou J 2016 Phys. Rev. B 94 195307 [14] Pei Q L, Luo X, Lin G T, Song J Y, Hu L, Zou Y M, Yu L, Tong W, Song W H, Lu W J and Sun Y P 2016 J. Appl. Phys. 119 043902 [15] Zhang H, Li Y, Hu X, Xu J, Chen L, Li G, Yin S, Chen J, Tan C, Kan X and Li L 2021 Appl. Phys. Lett. 119 171102 [16] Nayak A P, Pandey T, Voiry D, et al. 2015 Nano Lett. 15 346 [17] Gong Y, Zhou Q, Liu Y, Fu X, Yao M, Huang X, Huang Y, Gao H, Li F and Cui T 2018 The Journal of Physical Chemistry C 122 10261 [18] Yan Y, Li F, Gong Y, Yao M, Huang X, Fu X, Han B, Zhou Q and Cui T 2016 The Journal of Physical Chemistry C 120 24992 [19] Cheng X, Li Y, Shang J, Hu C, Ren Y, Liu M and Qi Z 2017 Nano Research 11 855 [20] Bandaru N, Kumar R S, Sneed D, Tschauner O, Baker J, Antonio D, Luo S N, Hartmann T, Zhao Y and Venkat R 2014 The Journal of Physical Chemistry C 118 3230 [21] Yan Y, Liu H, Han Y, Li F and Gao C 2018 Phys. Chem. Chem. Phys. 20 24927 [22] Susilo R A, Jang B G, Feng J, Du Q, Yan Z, Dong H, Yuan M, Petrovic C, Shim J H, Kim D Y and Chen B 2020 npj Quantum Materials 5 58 [23] Peng Y, Lin Z, Tian G, et al. 2021 Advanced Functional Materials 32 2106592 [24] Harms N C, Smith K A, Haglund A V, Mandrus D G, Liu Z, Kim H S and Musfeldt J L 2022 ACS Applied Electronic Materials 4 3246 [25] Fu X, Li F, Lin J F, Gong Y, Huang X, Huang Y, Gao H, Zhou Q and Cui T 2018 The Journal of Physical Chemistry C 122 5820 [26] Mao H K, Xu J and Bell P M 1986 Journal of Geophysical Research Solid Earth 91 4673 [27] Momma K and Izumi F 2011 Journal of Applied Crystallography 44 1272 [28] Diehl R and Carpentier C D 1977 Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry 33 1399 [29] Calder S, Haglund A V, Liu Y, Pajerowski D M, Cao H B, Williams T J, Garlea V O and Mandrus D 2020 Phys. Rev. B 102 024408 [30] Joe M, Lee H, Alyoruk M M, Lee J, Kim S Y, Lee C and Lee J H 2017 J. Phys.: Condens. Matter 29 405801 [31] Kroumova E, Aroyo M I, Perez-Mato J M, Kirov A, Capillas C, Ivantchev S and Wondratschek H 2003 Phase Transitions: A Multinational Journal 76 155 [32] Kim S, Lee J, Lee C and Ryu S 2021 The Journal of Physical Chemistry C 125 2691 [33] Kim S, Lee J, Jin G, Jo M H, Lee C and Ryu S 2019 Nano Lett. 19 4043 [34] Klotz S, Chervin J, Munsch P and Le Marchand G 2009 J. Phys. D: Appl. Phys. 42 075413 [35] Angel R J, Bujak M, Zhao J, Gatta G D and Jacobsen S D 2007 Journal of Applied Crystallography 40 26 [36] Neal S N, O’Neal K R, Haglund A V, Mandrus D G, Bechtel H A, Carr G L, Haule K, Vanderbilt D, Kim H S and Musfeldt J L 2021 2D Mater. 8 035020 [37] Yan Y, Feng D, Zhu J, Zhou Q, Tian F, Li F and Chao D 2023 The Journal of Physical Chemistry C 127 17186 [38] Matsuoka T, Rao R, Susner M A, Conner B S, Zhang D and Mandrus D 2023 Phys. Rev. B 107 165125 [39] Yan Y L, Wang J, Zhu J, Feng D M and Gao C X 2020 J. Alloys Compd. 823 153808 [40] Yan Y L, Li F F, Gong Y B, Yao M G, Huang X L, Fu X P, Han B, Zhou Q and Cui T 2016 J. Phys. Chem. C 120 24992 [41] Clune A, Harms N, O’Neal K R, Hughey K, Smith K A, Obeysekera D, Haddock J, Dalal N S, Yang J, Liu Z and Musfeldt J L 2020 Inorganic Chemistry Frontiers 59 10083 [42] Brinzari T V, O’Neal K R, Manson J L, Schlueter J A, Litvinchuk A P, Liu Z and Musfeldt J L 2016 Inorganic Chemistry Frontiers 55 1956 [43] Yan Y, Jin C, Wang J, Qin T, Li F, Wang K, Han Y and Gao C 2017 The Journal of Physical Chemistry Letters 8 3648 [44] Xia J, Li D F, Zhou J D, Yu P, Lin J H, Kuo J L, Li H B, Liu Z, Yan J X and Shen Z X 2017 Small 13 1701887 [45] Qi Y, Naumov P G, Ali M N, et al. 2016 Nat. Commun. 7 11038 [46] Coak M J, Jarvis D M, Hamidov H, et al. 2020 J. Phys.: Condens. Matter 32 124003 [47] Haines C R S, Coak M J, Wildes A R, Lampronti G I, Liu C, NahaiWilliamson P, Hamidov H, Daisenberger D and Saxena S S 2018 Phys. Rev. Lett. 121 266801 [48] Chryssou K and MSaEL A 2021 Ann. Chem. Sci. Res. 3 1 [49] Ohno Y, Mineo A, Matsubara I 1989 Phys. Rev. B 40 10262 [50] Miessler G L 2008 Inorganic chemistry (Pearson Education India) [51] Wood D L, Ferguson J, Knox K and Dillon J F Jr 1963 The Journal of Chemical Physics 39 890 [52] Chand P, Gaur A and Kumar A 2013 Superlattice Microst 64 331 [53] A M E 1935 Proc. Roy. Soc. London. Ser. A-Math. Phys. Sci. 151 274 [54] Chand P, Vaish S and Kumar P 2017 Physica B 524 53 [55] Bud’ko S L, Gati E, Slade T J and Canfield P C 2021 Phys. Rev. B 103 224407 [56] Gu P, Tan Q, Wan Y, Li Z, Peng Y, Lai J, Ma J, Yao X, Yang S, Yuan K, Sun D, Peng B, Zhang J and Ye Y 2020 ACS Nano 14 1003 [57] Wood D L, Ferguson J, Knox K and Dillon J F Jr 2004 The Journal of Chemical Physics 39 890 [58] Nosenzo L, Samoggia G and Pollini I 1984 Phys. Rev. B 29 3607 [59] Lee C J, Mizel A, Banin U, Cohen M L and Alivisatos A P 2000 The Journal of Chemical Physics 113 2016 [60] Manjon F J, Segura A, Mu noz-Sanjos e V, Tob ias G, Ordejon P and Canadell E 2004 Phys. Rev. B 70 125201 [61] Fu L, Wan Y, Tang N, et al. 2017 Sci. Adv. 3 e1700162
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.