Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(6): 064204    DOI: 10.1088/1674-1056/adc401
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Polarization-sensitive nonlinear optical diffraction

Jianluo Chen(陈健洛)1,†, Lihong Hong(洪丽红)2,1,†,‡, Yu Zou(邹娱)1, Jiacheng Li(李嘉诚)1, and Zhi-Yuan Li(李志远)1
1 School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510641, China;
2 State Key Laboratory of Ultra-intense laser Science and Technology, Shanghai Institude of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  When a laser beam is incident on a nonlinear grating with a laterally modulated second-order nonlinear coefficient, nonlinear diffraction of the noncollinear second-harmonic generation (SHG) signal occurs, with Raman-Nath nonlinear diffraction (NRND) being a prominent example. As these SHG NRND processes involve coupling between the fundamental-wave pump laser vectorial field and the SHG laser vectorial field through the second-order nonlinearity second-rank tensor of the nonlinear crystal, the nonlinear interaction between light and the nonlinear grating can be manipulated by adjusting the polarization state of the pump laser. In this paper, we derive the relationship between the polarization state of the incident light and the generated nonlinear diffraction signal based on the nonlinear coupled wave equation and experimentally validate the predicted diffraction characteristics. The results show that the optical properties of each order of NRND are highly sensitive to the polarization angle of the incident pump laser beam.
Keywords:  Raman-Nath nonlinear diffraction (NRND)      nonlinear diffraction      polarization  
Received:  21 December 2024      Revised:  26 February 2025      Accepted manuscript online:  24 March 2025
PACS:  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
Fund: Project supported by Science and Technology Project of Guangdong (Grant No. 2020B010190001), the National Natural Science Foundation of China (Grant No. 12434016), and National Funded Postdoctoral Researcher Program (Grant No. GZB20240785).
Corresponding Authors:  Lihong Hong     E-mail:  honglihong@siom.ac.cn

Cite this article: 

Jianluo Chen(陈健洛), Lihong Hong(洪丽红), Yu Zou(邹娱), Jiacheng Li(李嘉诚), and Zhi-Yuan Li(李志远) Polarization-sensitive nonlinear optical diffraction 2025 Chin. Phys. B 34 064204

[1] Franken P A and Ward J F 1963 Rev. Mod. Phys. 35 23
[2] Fejer M M, Magel G A, Jundt D H and Byer R L 1992 IEEE J. Quantum Electron. 28 2631
[3] Freund I 1968 Phys. Rev. Lett. 21 1404
[4] Fang X,Wei D, Liu D, ZhongW, Ni R, Chen Z, Hu X, Zhang Y, Zhu S N and Xiao M 2015 Appl. Phys. Lett. 107 161102
[5] Saltiel S M, Neshev D N, Fischer R, Krolikowski W, Arie A and Kivshar Y S 2008 Jpn. J. Appl. Phys. 47 6777
[6] Zhang Y, Gao Z D, Qi Z, Zhu S N and Ming N B 2008 Phys. Rev. Lett. 100 163904
[7] An N, Ren H, Zheng Y, Deng X and Chen X 2012 Appl. Phys. Lett. 100 221103
[8] Born M andWolf E 1999 Principles of Optics (Cambridge: Cambridge Univ. Press) p. 1779
[9] Palmer C A and Loewen E G 2005 Diffraction Grating Handbook (Newport Corporation)
[10] Chen Y S, Liu Y X, Zhao R W, Xu T X, Sheng Y and Xu T F 2022 Cryst. Res. Technol. 57 2100193
[11] Saltiel S M, Sheng Y, Voloch-Bloch N, Neshev D N, Krolikowski W, Arie A, Koynov K and Kivshar Y S 2009 IEEE J. Quantum Electron. 45 1465
[12] Sheng Y, Kong Q, Wang W, Kalinowski K and Krolikowski W 2012 J. Phys. B: At. Mol. Opt. Phys. 45 055401
[13] Wang W, Sheng Y, Roppo V, Chen Z, Niu X and Krolikowski W 2013 Opt. Express 21 18671
[14] Momosaki R, Ashikawa K, Sakamoto M, Noda K, Sasaki T, Kawatsuki N and Ono H 2019 24th Microoptics Conf. 158
[15] Botten L C, Cadilhac M, Derrick G H, Maystre D, McPhedran R C, Nevière M, and Vincent P 2013 Electromagnetic Theory of Gratings (Springer Science & Business Media)
[16] Molina P, Ramírez M O, García B J and Bausá L E 2010 Appl. Phys. Lett. 96 261111
[17] Sheng Y, Saltiel S M, Krolikowski W, Arie A, Koynov K and Kivshar Y S 2010 Opt. Lett. 35 1317
[18] Hong L H, Chen B Q, Hu C Y and Li Z Y 2022 Photon. Res. 10 905
[19] Vyunishev A M, Arkhipkin V G, Slabko V V, Baturin I S, Akhmatkhanov A R, Shur V Ya and Chirkin A S 2015 Opt. Lett. 40 4002
[20] Qian S H, Wang K, Yang J X, Guan C, Long H and Lu P X 2023 Chinese Physics B 32 107803
[21] Hong L H, Zou Y, Li J C, Chen J L and Li Z Y 2024 J. Opt. Soc. Am. B 41 2562
[22] Trull J, Cojocaru C, Fischer R, Saltiel S M, Staliunas K, Herrero R, Vilaseca R, Neshev D N, Krolikowski W and Kivshar Y S 2007 Opt. Express 15 15868
[1] Molecular dynamics simulations of ferroelectricity in P(VDF-TrFE)
Mengyuan Tang(唐梦圆), Chuhan Tang(唐楚涵), Sheng-Yi Xie(谢声意), and Fuxiang Li(李福祥). Chin. Phys. B, 2025, 34(6): 067701.
[2] Deep learning-enabled inverse design of polarization-selective structural color based on coding metasurface
Haolin Yang(杨昊霖), Bo Ni(倪波), Junhong Guo(郭俊宏), Hua Zhou(周华), and Jianhua Chang(常建华). Chin. Phys. B, 2025, 34(5): 050702.
[3] Nonlinear Raman-Nath diffraction of inclined femtosecond laser by periodically poled lithium niobate nonlinear grating
Jiacheng Li(李嘉诚), Lihong Hong(洪丽红), Yu Zou(邹娱), Jianluo Chen(陈健洛), and Zhi-Yuan Li(李志远). Chin. Phys. B, 2025, 34(5): 054205.
[4] Encoding converters for quantum communication networks
Hua-Xing Xu(许华醒), Shao-Hua Wang(王少华), Ya-Qi Song(宋雅琪), Ping Zhang(张平), and Chang-Lei Wang(王昌雷). Chin. Phys. B, 2025, 34(5): 050310.
[5] Broadband polarization-independent terahertz multifunctional liquid crystal coding metasurface based on topological optimization
Yu Chen(陈羽), Wu-Hao Cao(曹吴昊), Jia-Qi Li(李嘉琦), Ming-Zhe Zhang(张明哲), Xin-Yi Du(杜欣怡), Ding-Shan Gao(郜定山), and Pei-Li Li(李培丽). Chin. Phys. B, 2025, 34(4): 044205.
[6] First principles prediction of the valley Hall effect in ScBrCl monolayer
Xiang Yu(于翔), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2025, 34(4): 047305.
[7] Merging and separation of polarization singularities in complex lattices
Mengyao Wang(王梦瑶), Tian Shi(石天), Luhui Ning(宁鲁慧), Peng Liu(刘鹏), Liangsheng Li(李粮生), and Ning Zheng(郑宁). Chin. Phys. B, 2025, 34(3): 037303.
[8] Modulation of Bessel-like vector vortex beam using the resonant magneto-optical effect in rubidium vapor
Yan Ma(马燕), Xin Yang(杨欣), Hong Chang(常虹), Ming-Tao Cao(曹明涛), Xiao-Fei Zhang(张晓斐), Rui-Fang Dong(董瑞芳), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2025, 34(2): 024202.
[9] Machine-learning-assisted efficient reconstruction of the quantum states generated from the Sagnac polarization-entangled photon source
Menghui Mao(毛梦辉), Wei Zhou(周唯), Xinhui Li(李新慧), Ran Yang(杨然), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2024, 33(8): 080301.
[10] Deep-subwavelength single grooves prepared by femtosecond laser direct writing on Si
Rui-Xi Ye(叶瑞熙) and Min Huang(黄敏). Chin. Phys. B, 2024, 33(8): 087901.
[11] Fully spin-polarized, valley-polarized and spin-valley-polarized electron beam splitters utilizing zero-line modes in a three-terminal device
Xiao-Long Lü(吕小龙), Jia-En Yang(杨加恩), and Hang Xie(谢航). Chin. Phys. B, 2024, 33(6): 068502.
[12] Linear dichroism transition and polarization-sensitive photodetector of quasi-one-dimensional palladium bromide
Wan-Li Zhu(朱万里), Wei-Li Zhen(甄伟立), Rui Niu(牛瑞), Ke-Ke Jiao(焦珂珂), Zhi-Lai Yue(岳智来), Hui-Jie Hu(胡慧杰), Fei Xue(薛飞), and Chang-Jin Zhang(张昌锦). Chin. Phys. B, 2024, 33(6): 068101.
[13] Intrinsic polarization conversion and avoided-mode crossing in X-cut lithium niobate microrings
Zelin Tan(谭泽林), Jianfa Zhang(张检发), Zhihong Zhu(朱志宏), Wei Chen(陈伟), Zhengzheng Shao(邵铮铮), Ken Liu(刘肯), and Shiqiao Qin(秦石乔). Chin. Phys. B, 2024, 33(6): 064205.
[14] A novel order-reduced thermal-coupling electrochemical model for lithium-ion batteries
Yizhan Xie(谢奕展), Shuhui Wang(王舒慧), Zhenpo Wang(王震坡), and Ximing Cheng(程夕明). Chin. Phys. B, 2024, 33(5): 058203.
[15] Anomalous valley Hall effect in two-dimensional valleytronic materials
Hongxin Chen(陈洪欣), Xiaobo Yuan(原晓波), and Junfeng Ren(任俊峰). Chin. Phys. B, 2024, 33(4): 047304.
No Suggested Reading articles found!