Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 086301    DOI: 10.1088/1674-1056/add4e2
Special Issue: SPECIAL TOPIC — Structures and properties of materials under high pressure
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Structure and properties of MgO melt at high pressure: A first-principles study

Min Wu(吴旻)1,2,† and Zhongsen Sun(孙忠森)1
1 College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
2 Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312000, China
Abstract  MgO is one of the most abundant minerals in the Earth's interior, and its structure and properties at high temperature and pressure are important for us to understand the composition and behavior in the deep Earth. In the present work, first-principles molecular dynamics calculations were performed to investigate the pressure-induced structural evolution of the MgO melts at 4000 K and 5000 K. The results predicted the liquid-solid phase boundaries, and the calculated viscosities of the melts may help us to understand the transport behavior under the corresponding Earth conditions.
Keywords:  first-principles      molecular dynamics      MgO melt      high temperature and high pressure  
Received:  28 February 2025      Revised:  17 April 2025      Accepted manuscript online:  07 May 2025
PACS:  63.20.dk (First-principles theory)  
  31.15.xv (Molecular dynamics and other numerical methods)  
  61.20.Ja (Computer simulation of liquid structure)  
  64.70.dj (Melting of specific substances)  
  64.70.fm (Thermodynamics studies of evaporation and condensation)  
Fund: This research was supported by the National Natural Science Foundation of China (Grant No. 51701180) and the Foundation of the State Key Laboratory of Coal Conversion (Grant No. J22-23-103).
Corresponding Authors:  Min Wu     E-mail:  wum@zjut.edu.cn

Cite this article: 

Min Wu(吴旻) and Zhongsen Sun(孙忠森) Structure and properties of MgO melt at high pressure: A first-principles study 2025 Chin. Phys. B 34 086301

[1] McMillan P F 2003 Chem. Commun. 8 919
[2] Goncharov A 2020 Low Temp. Phys. 46 97
[3] Kimura T, Ohfusi H, Nishi M and Irifune T 2017 Nat. Commun. 8 15735
[4] Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K and Payne M C 2005 Z. Krist.-Cryst. Mater. 220 567
[5] Orio M, Pantazis D A and Neese F 2009 Photosynth. Res. 102 443
[6] Neugebauer J and Hickel T 2013 Wires. Comput. Mol. Sci. 3 438
[7] Hafner J 2008 J. Comput. Chem. 29 2044
[8] Musella R, Mazevet S and Guyot F 2019 Phys. Rev. B 99 064110
[9] Birch F 1961 Geophys. J. Int. 4 295
[10] Jackson I 1998 Composition and Temperature of the Earth’s Mantle: Seismological Models Interpreted through Experimental Studies of Earth Materials (Cambridge: Cambridge University Press) pp. 405–60
[11] McWilliams R S, Spaulding D K, Eggert J H, Celliers P M, Hicks D G, Smith R F, Collins G W and Jeanloz R 2012 Science 338 1330
[12] Ronchi C and Sheindlin M 2001 J. Appl. Phys. 90 3325
[13] Alfè D 2005 Phys. Rev. Lett. 94 235701
[14] Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245
[15] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[16] Sun G, Kürti J, Rajczy P, Kertesz M, Hafner J and Kresse G 2003 J. Mol. Struc.-Theochem. 624 37
[17] Blöchl P E 1994 Phys. Rev. B 50 17953
[18] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[19] Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471
[20] Delhommelle J and Evans D J 2001 J. Chem. Phys. 115 43
[21] Kuang F G, Kuang X Y, Kang S Y, ZhongMMand Mao A J 2014 Mat. Sci. Semicon. Proc. 23 63
[22] Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471
[23] Genova A and Pavanello M 2015 J. Phys.: Condens. Matter 27 495501
[24] Leu A L, Ma S M and Eyring H 1975 Proc. Nat. Acad. Sci. USA 72 1026
[25] Li S Y, Liu Z L, Nan Y G and Zhang Z R 2006 Chin. J. Chem. Phys. 19 315
[26] Alfe D and Gillan M J 1998 Phys. Rev. Lett. 81 5161
[1] First-principles design of excitonic insulators: A review
Hongwei Qu(曲宏伟), Haitao Liu(刘海涛), and Yuanchang Li(李元昌). Chin. Phys. B, 2025, 34(9): 097101.
[2] Doping-induced magnetic and topological transitions in Mn2X2Te5 (X = Bi, Sb) bilayers
Wei Chen(陈威), Chuhan Tang(唐楚涵), Chao-Fei Liu(刘超飞), and Mingxing Chen(陈明星). Chin. Phys. B, 2025, 34(9): 097304.
[3] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[4] Low-temperature photoluminescence study of optical centers in HPHT-diamonds
Liangchao Chen(陈良超), Xinyuan Miao(苗辛原), Zhuangfei Zhang(张壮飞), Biao Wan(万彪), Yuewen Zhang(张跃文), Qianqian Wang(王倩倩), Longsuo Guo(郭龙锁), and Chao Fang(房超). Chin. Phys. B, 2025, 34(8): 086103.
[5] First-principles calculations on strain tunable hyperfine Stark shift of shallow donors in Si
Zi-Kai Zhou(周子凯) and Jun Kang(康俊). Chin. Phys. B, 2025, 34(8): 087102.
[6] Solubility parameters of supercritical CO2 and CO2+H2O fluids: A molecular dynamics study
Junliang Wang(王军良), Jiaqing Fang(方佳清), Ting Wu(吴婷), Quanyuan Wang(王泉源), Zhiyan Pan(潘志彦), Mian Hu(胡沔), and Min Wu(吴旻). Chin. Phys. B, 2025, 34(8): 088201.
[7] Hyperparameter optimization and force error correction of neuroevolution potential for predicting thermal conductivity of wurtzite GaN
Zhuo Chen(陈卓), Yuejin Yuan(袁越锦), Wenyang Ding(丁文扬), Shouhang Li(李寿航), Meng An(安盟), and Gang Zhang(张刚). Chin. Phys. B, 2025, 34(8): 086110.
[8] Theoretical investigation on the H sublattice in CaH6 and energetic performance
Zhihong Huang(黄植泓), Nan Li(李楠), Jun Zhang(张俊), Xiuyuan Li(李修远), Zihuan Peng(彭梓桓), Chongwen Jiang(江崇文), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(8): 086202.
[9] Molecular simulation study on phase separation of immunoglobulin G
Lv-Meng Hu(胡吕梦), Yuan-Qiang Chen(陈远强), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2025, 34(8): 088701.
[10] Anisotropic displacement threshold energy and defect distribution in diamond: PKA energy and temperature effect
Ke Wu(吴可), Zeyi Du(杜泽依), Hongyang Liu(刘洪洋), Nanyun Bao(包南云), Chengke Xu(许成科), Hongrui Wang(王泓睿), Qunchao Tong(童群超), Bo Chen(陈博), Dongdong Kang(康冬冬), Guang Wang(王广), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2025, 34(8): 087104.
[11] Interfacial design and thermoelectric properties of C3N4-C20 molecular junctions based on quantum interference
Shutao Hu(胡澍涛), Meng Qian(钱萌), Gang Zhang(张刚), and Bei Zhang(张蓓). Chin. Phys. B, 2025, 34(6): 068903.
[12] General-purpose moment tensor potential for Ga-In liquid alloys towards large-scale molecular dynamics with ab initio accuracy
Kai-Jie Zhao(赵凯杰) and Zhi-Gong Song(宋智功). Chin. Phys. B, 2025, 34(6): 066101.
[13] Depolymerization mechanism of microtubule revealed by nucleotide-dependent changes of longitudinal and lateral interactions
Bingbing Zhang(张冰冰), Ziling Huo(霍子玲), Jiaxi Li(李佳希), Jingyu Qin(覃静宇), and Yizhao Geng(耿轶钊). Chin. Phys. B, 2025, 34(6): 068702.
[14] Effective strategy of enhancing piezoelectricity in stable CrSiN4Sn semiconductor monolayers by atom-layer-pair effect
Qi-Wen He(贺绮雯), Dan-Yang Zhu(朱丹阳), Jun-Hui Wang(王俊辉), He-Na Zhang(张贺娜), Xiao Shang(尚骁), Shou-Xin Cui(崔守鑫), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2025, 34(5): 057701.
[15] Unveiling the role of high-order anharmonicity in thermal expansion: A first-principles perspective
Tianxu Zhang(张天旭), Kun Zhou(周琨), Yingjian Li(李英健), Chenhao Yi(易晨浩), Muhammad Faizan, Yuhao Fu(付钰豪), Xinjiang Wang(王新江), and Lijun Zhang(张立军). Chin. Phys. B, 2025, 34(4): 046301.
No Suggested Reading articles found!