Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 123701    DOI: 10.1088/1674-1056/ad7b00
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Determining the tilt of the Raman laser beam using an optical method for atom gravimeters

Hua-Qing Luo(骆华清), Yao-Yao Xu(徐耀耀)†, Jia-Feng Cui(崔嘉丰)‡, Xiao-Bing Deng(邓小兵), Min-Kang Zhou(周敏康), Xiao-Chun Duan(段小春), and Zhong-Kun Hu(胡忠坤)
MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  The tilt of a Raman laser beam is a major systematic error in precision gravity measurement using atom interferometry. The conventional approach to evaluating this tilt error involves modulating the direction of the Raman laser beam and conducting time-consuming gravity measurements to identify the error minimum. In this work, we demonstrate a method to expediently determine the tilt of the Raman laser beam by transforming the tilt angle measurement into characterization of parallelism, which integrates the optical method of aligning the laser direction, commonly used in freely falling corner-cube gravimeters, into an atom gravimeter. A position-sensing detector (PSD) is utilized to quantitatively characterize the parallelism between the test beam and the reference beam, thus measuring the tilt precisely and rapidly. After carefully positioning the PSD and calibrating the relationship between the distance measured by the PSD and the tilt angle measured by the tiltmeter, we achieved a statistical uncertainty of less than 30 μrad in the tilt measurement. Furthermore, we compared the results obtained through this optical method with those from the conventional tilt modulation method for gravity measurement. The comparison validates that our optical method can achieve tilt determination with an accuracy level of better than 200 μrad, corresponding to a systematic error of 20 μGal in $g$ measurement. This work has practical implications for real-world applications of atom gravimeters.
Keywords:  atom interferometer      absolute gravimeter      precision measurement      tilt of Raman laser  
Received:  31 July 2024      Revised:  12 September 2024      Accepted manuscript online:  14 September 2024
PACS:  37.25.+k (Atom interferometry techniques)  
  04.80.-y (Experimental studies of gravity)  
  06.30.Gv (Velocity, acceleration, and rotation)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
Fund: Project was supported by the National Key Research and Development Program of China (Grant No. 2021YFB3900204).
Corresponding Authors:  Yao-Yao Xu     E-mail:  xuyaoyaoleo@hust.edu.cn

Cite this article: 

Hua-Qing Luo(骆华清), Yao-Yao Xu(徐耀耀), Jia-Feng Cui(崔嘉丰), Xiao-Bing Deng(邓小兵), Min-Kang Zhou(周敏康), Xiao-Chun Duan(段小春), and Zhong-Kun Hu(胡忠坤) Determining the tilt of the Raman laser beam using an optical method for atom gravimeters 2024 Chin. Phys. B 33 123701

[1] Rice H, Kelmenson S and Mendelsohn L 2004 PLANS 2004 Position Location and Navigation Symposium (IEEE Cat. No. 04CH37556), April 26-29, 2004, Monterey, CA, USA, p. 618
[2] Zhang M H, Qiao J H, Zhao G X and Lan X Y 2019 China Geol. 2 382
[3] Riordan S 2019 And how experiments begin: the international prototype kilogram and the Planck constant, in de Courtenay N, Darrigol O and Schlaudt O (eds.) The reform of the International System of Units (SI): philosophical, historical and sociological issues. London: Routledge
[4] Sandwell D T, Müller R D, Smith W H, Garcia E and Francis R 2014 Science 346 65
[5] Peters A, Chung K Y and Chu S 1999 Nature 400 849
[6] Peters A, Chung K Y and Chu S 2001 Metrologia 38 25
[7] Louchet-Chauvet A, Farah T, Bodart Q, Clairon A, Landragin A, Merlet S and Dos Santos F P 2011 New J. Phys. 13 065025
[8] Karcher R, Imanaliev A, Merlet S and Santos F P D 2018 New J. Phys. 20 113041
[9] Müller H, Chiow S W, Herrmann S, Chu S and Chung K Y 2008 Phys. Rev. Lett. 100 031101
[10] Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z and Luo J 2013 Phys. Rev. A 88 043610
[11] Zhang T, Chen L L, Shu Y B, Xu W J, Cheng Y, Luo Q, Hu Z K and Zhou M K 2023 Phys. Rev. Appl. 20 014067
[12] Ménoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A and Desruelle B 2018 Sci. Rep. 8 12300
[13] Li C Y, Long J B, Huang M Q, Chen B, Yang Y M, Jiang X, Xiang C F, Ma Z L, He D Q and Chen L K 2023 Phys. Rev. A 108 032811
[14] Bidel Y, Carraz O, Charrière R, Cadoret M, Zahzam N and Bresson A 2013 Appl. Phys. Lett. 102 144107
[15] Wu S, Feng J, Li C, Su D, Wang Q, Hu R and Mou L 2021 J. Geod. 95 63
[16] Xu Y Y, Cui J F, Qi K, Chen L L, Deng X B, Luo Q, Zhang H, Tan Y J, Shao C G and Zhou M K 2022 Metrologia 59 055001
[17] Fu Z, Wu B, Cheng B, Zhou Y, Weng K, Zhu D, Wang Z and Lin Q 2019 Metrologia 56 025001
[18] Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y and Li C J 2018 Metrologia 55 360
[19] Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J and Zhan M S 2019 Metrologia 56 045012
[20] Wu X 2009 Gravity gradient survey with a mobile atom interferometer (Ph.D. Dissertation) (San Francisco: Stanford University)
[21] Wang H,Wang K, Xu Y, Tang Y,Wu B, Cheng B,Wu L, Zhou Y,Weng K and Zhu D 2022 Sensors 22 6172
[22] Zhang J Y, Xu W J, Sun S D, Shu Y B, Luo Q, Cheng Y, Hu Z K and Zhou M K 2021 AIP Adv. 11 115223
[23] Wu X, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S and Müller H 2019 Sci. Adv. 5 eaax0800
[24] Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D and Lequentrec-Lalancette M 2018 Nat. Commun. 9 627
[25] Wu B, Zhang C,Wang K, Cheng B, Zhu D, Li R,Wang X, Lin Q, Qiao Z and Zhou Y 2023 IEEE Sens. J. 23 24292
[26] Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V and Forsberg R 2020 J. Geod. 94 1
[27] Geiger R, Ménoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M and Bidel Y 2011 Nat. Commun. 2 474
[28] Niebauer T, Sasagawa G, Faller J E, Hilt R and Klopping F 1995 Metrologia 32 159
[29] Křen P, Pálinkáš V and Mašika P 2018 Metrologia 55 451
[30] Senger A 2012 A mobile atom interferometer for high-precision measurements of local gravity (Ph.D. Dissertation) (Berlin: Humboldt University)
[31] Xie H T, Chen B, Long J B, Xue C, Chen L K and Chen S 2020 Chin. Phys. B 29 073701
[32] Wu B, Zhu D, Cheng B, Wu L, Wang K, Wang Z, Shu Q, Li R, Wang H and Wang X 2019 Opt. Express 27 11252
[33] Müller H, Chiow S W, Long Q, Vo C and Chu S 2005 Opt. Lett. 30 3323
[34] Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Chang Y, Grinin A, Lamour T, Shi T and Yost D C 2016 Opt. Express 24 17470
[35] Hauth M, Freier C, Schkolnik V, Senger A, Schmidt M and Peters A 2013 Appl. Phys. B 113 49
[1] Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field
Wen-Tao Lu(卢文韬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Kang-Hao He(何康浩), Zeng-Bo Xu(许增博), Yi-Han Chen(陈艺涵), Yang Wang(汪洋), Shi-Yu Ge(葛仕宇), Si-Han An(安思瀚), Jian-Fei Wu(吴建飞), Yi-Han Ma(马艺菡), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(8): 080305.
[2] Micron-resolved quantum precision measurement of magnetic field at the Tesla level
Si-Han An(安思瀚), Shi-Yu Ge(葛仕宇), Wen-Tao Lu(卢文韬), Guo-Bin Chen(陈国彬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Cheng-Kun Wang(王成坤), Lin-Yan Yu(虞林嫣), Zhi-Qiang Zhang(张致强), Yang Wang(汪洋), Gui-Jin Tang(唐贵进), Hua-Fu Cheng(程华富), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(12): 120305.
[3] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋),Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[4] Optimal zero-crossing group selection method of the absolute gravimeter based on improved auto-regressive moving average model
Zonglei Mou(牟宗磊), Xiao Han(韩笑), and Ruo Hu(胡若). Chin. Phys. B, 2023, 32(11): 110401.
[5] Quantum-enhanced optical precision measurement assisted by low-frequency squeezed vacuum states
Guohui Kang(康国辉), Jinxia Feng(冯晋霞), Lin Cheng(程琳), Yuanji Li(李渊骥), and Kuanshou Zhang(张宽收). Chin. Phys. B, 2023, 32(10): 104204.
[6] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[7] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[8] Preparation of a two-state mixture of ultracold fermionic atoms with balanced population subject to the unstable magnetic field
Donghao Li(李东豪), Lianghui Huang(黄良辉), Guoqi Bian(边国旗), Jie Miao(苗杰), Liangchao Chen(陈良超), Zengming Meng(孟增明), Wei Han(韩伟), and Pengjun Wang(王鹏军). Chin. Phys. B, 2021, 30(9): 090303.
[9] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[10] Precision measurements with cold atoms and trapped ions
Qiuxin Zhang(张球新), Yirong Wang(王艺蓉), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Xiang Zhang(张翔), Kuiyi Gao(高奎意), Wei Zhang(张威). Chin. Phys. B, 2020, 29(9): 093203.
[11] Calibration of a compact absolute atomic gravimeter
Hong-Tai Xie(谢宏泰), Bin Chen(陈斌), Jin-Bao Long(龙金宝), Chun Xue(薛春), Luo-Kan Chen(陈泺侃), Shuai Chen(陈帅). Chin. Phys. B, 2020, 29(9): 093701.
[12] Movable precision gravimeters based on cold atom interferometry
Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐), Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2020, 29(9): 093702.
[13] Suppression of Coriolis error in weak equivalence principle test using 85Rb-87Rb dual-species atom interferometer
Wei-Tao Duan(段维涛), Chuan He(何川), Si-Tong Yan(闫思彤), Yu-Hang Ji(冀宇航), Lin Zhou(周林), Xi Chen(陈曦), Jin Wang(王谨), Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2020, 29(7): 070305.
[14] Interference properties of a trapped atom interferometer in two asymmetric optical dipole traps
Li-Yong Wang(王立勇), Xiao Li(李潇), Kun-Peng Wang(王坤鹏), Yin-Xue Zhao(赵吟雪), Ke Di(邸克), Jia-Jia Du(杜佳佳), and Jian-Gong Hu(胡建功). Chin. Phys. B, 2020, 29(12): 123701.
[15] Systematic error suppression scheme of the weak equivalence principle test by dual atom interferometers in space based on spectral correlation
Jian-Gong Hu(胡建功), Xi Chen(陈曦), Li-Yong Wang(王立勇), Qing-Hong Liao(廖庆洪), and Qing-Nian Wang(汪庆年)$. Chin. Phys. B, 2020, 29(11): 110305.
No Suggested Reading articles found!