|
|
Determining the tilt of the Raman laser beam using an optical method for atom gravimeters |
Hua-Qing Luo(骆华清), Yao-Yao Xu(徐耀耀)†, Jia-Feng Cui(崔嘉丰)‡, Xiao-Bing Deng(邓小兵), Min-Kang Zhou(周敏康), Xiao-Chun Duan(段小春), and Zhong-Kun Hu(胡忠坤) |
MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract The tilt of a Raman laser beam is a major systematic error in precision gravity measurement using atom interferometry. The conventional approach to evaluating this tilt error involves modulating the direction of the Raman laser beam and conducting time-consuming gravity measurements to identify the error minimum. In this work, we demonstrate a method to expediently determine the tilt of the Raman laser beam by transforming the tilt angle measurement into characterization of parallelism, which integrates the optical method of aligning the laser direction, commonly used in freely falling corner-cube gravimeters, into an atom gravimeter. A position-sensing detector (PSD) is utilized to quantitatively characterize the parallelism between the test beam and the reference beam, thus measuring the tilt precisely and rapidly. After carefully positioning the PSD and calibrating the relationship between the distance measured by the PSD and the tilt angle measured by the tiltmeter, we achieved a statistical uncertainty of less than 30 μrad in the tilt measurement. Furthermore, we compared the results obtained through this optical method with those from the conventional tilt modulation method for gravity measurement. The comparison validates that our optical method can achieve tilt determination with an accuracy level of better than 200 μrad, corresponding to a systematic error of 20 μGal in $g$ measurement. This work has practical implications for real-world applications of atom gravimeters.
|
Received: 31 July 2024
Revised: 12 September 2024
Accepted manuscript online: 14 September 2024
|
PACS:
|
37.25.+k
|
(Atom interferometry techniques)
|
|
04.80.-y
|
(Experimental studies of gravity)
|
|
06.30.Gv
|
(Velocity, acceleration, and rotation)
|
|
42.79.Fm
|
(Reflectors, beam splitters, and deflectors)
|
|
Fund: Project was supported by the National Key Research and Development Program of China (Grant No. 2021YFB3900204). |
Corresponding Authors:
Yao-Yao Xu
E-mail: xuyaoyaoleo@hust.edu.cn
|
Cite this article:
Hua-Qing Luo(骆华清), Yao-Yao Xu(徐耀耀), Jia-Feng Cui(崔嘉丰), Xiao-Bing Deng(邓小兵), Min-Kang Zhou(周敏康), Xiao-Chun Duan(段小春), and Zhong-Kun Hu(胡忠坤) Determining the tilt of the Raman laser beam using an optical method for atom gravimeters 2024 Chin. Phys. B 33 123701
|
[1] Rice H, Kelmenson S and Mendelsohn L 2004 PLANS 2004 Position Location and Navigation Symposium (IEEE Cat. No. 04CH37556), April 26-29, 2004, Monterey, CA, USA, p. 618 [2] Zhang M H, Qiao J H, Zhao G X and Lan X Y 2019 China Geol. 2 382 [3] Riordan S 2019 And how experiments begin: the international prototype kilogram and the Planck constant, in de Courtenay N, Darrigol O and Schlaudt O (eds.) The reform of the International System of Units (SI): philosophical, historical and sociological issues. London: Routledge [4] Sandwell D T, Müller R D, Smith W H, Garcia E and Francis R 2014 Science 346 65 [5] Peters A, Chung K Y and Chu S 1999 Nature 400 849 [6] Peters A, Chung K Y and Chu S 2001 Metrologia 38 25 [7] Louchet-Chauvet A, Farah T, Bodart Q, Clairon A, Landragin A, Merlet S and Dos Santos F P 2011 New J. Phys. 13 065025 [8] Karcher R, Imanaliev A, Merlet S and Santos F P D 2018 New J. Phys. 20 113041 [9] Müller H, Chiow S W, Herrmann S, Chu S and Chung K Y 2008 Phys. Rev. Lett. 100 031101 [10] Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z and Luo J 2013 Phys. Rev. A 88 043610 [11] Zhang T, Chen L L, Shu Y B, Xu W J, Cheng Y, Luo Q, Hu Z K and Zhou M K 2023 Phys. Rev. Appl. 20 014067 [12] Ménoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A and Desruelle B 2018 Sci. Rep. 8 12300 [13] Li C Y, Long J B, Huang M Q, Chen B, Yang Y M, Jiang X, Xiang C F, Ma Z L, He D Q and Chen L K 2023 Phys. Rev. A 108 032811 [14] Bidel Y, Carraz O, Charrière R, Cadoret M, Zahzam N and Bresson A 2013 Appl. Phys. Lett. 102 144107 [15] Wu S, Feng J, Li C, Su D, Wang Q, Hu R and Mou L 2021 J. Geod. 95 63 [16] Xu Y Y, Cui J F, Qi K, Chen L L, Deng X B, Luo Q, Zhang H, Tan Y J, Shao C G and Zhou M K 2022 Metrologia 59 055001 [17] Fu Z, Wu B, Cheng B, Zhou Y, Weng K, Zhu D, Wang Z and Lin Q 2019 Metrologia 56 025001 [18] Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y and Li C J 2018 Metrologia 55 360 [19] Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J and Zhan M S 2019 Metrologia 56 045012 [20] Wu X 2009 Gravity gradient survey with a mobile atom interferometer (Ph.D. Dissertation) (San Francisco: Stanford University) [21] Wang H, Wang K, Xu Y, Tang Y, Wu B, Cheng B, Wu L, Zhou Y, Weng K and Zhu D 2022 Sensors 22 6172 [22] Zhang J Y, Xu W J, Sun S D, Shu Y B, Luo Q, Cheng Y, Hu Z K and Zhou M K 2021 AIP Adv. 11 115223 [23] Wu X, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S and Müller H 2019 Sci. Adv. 5 eaax0800 [24] Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D and Lequentrec-Lalancette M 2018 Nat. Commun. 9 627 [25] Wu B, Zhang C, Wang K, Cheng B, Zhu D, Li R, Wang X, Lin Q, Qiao Z and Zhou Y 2023 IEEE Sens. J. 23 24292 [26] Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V and Forsberg R 2020 J. Geod. 94 1 [27] Geiger R, Ménoret V, Stern G, Zahzam N, Cheinet P, Battelier B, Villing A, Moron F, Lours M and Bidel Y 2011 Nat. Commun. 2 474 [28] Niebauer T, Sasagawa G, Faller J E, Hilt R and Klopping F 1995 Metrologia 32 159 [29] Křen P, Pálinkáš V and Mašika P 2018 Metrologia 55 451 [30] Senger A 2012 A mobile atom interferometer for high-precision measurements of local gravity (Ph.D. Dissertation) (Berlin: Humboldt University) [31] Xie H T, Chen B, Long J B, Xue C, Chen L K and Chen S 2020 Chin. Phys. B 29 073701 [32] Wu B, Zhu D, Cheng B, Wu L, Wang K, Wang Z, Shu Q, Li R, Wang H and Wang X 2019 Opt. Express 27 11252 [33] Müller H, Chiow S W, Long Q, Vo C and Chu S 2005 Opt. Lett. 30 3323 [34] Beyer A, Maisenbacher L, Matveev A, Pohl R, Khabarova K, Chang Y, Grinin A, Lamour T, Shi T and Yost D C 2016 Opt. Express 24 17470 [35] Hauth M, Freier C, Schkolnik V, Senger A, Schmidt M and Peters A 2013 Appl. Phys. B 113 49 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|