Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 077105    DOI: 10.1088/1674-1056/adc97e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Impact of epitaxial structural parameters on two-dimensional hole gas properties in p-GaN/AlGaN/GaN heterostructures

Fuzhou Wen(文福洲)1, Qianshu Wu(吴千树)1, Jinwei Zhang(张津玮)1, Zhuoran Luo(罗卓然)1, Senyuan Xu(许森源)1, Hao Jiang(江灏)1, and Yang Liu(刘扬)1,2,†
1 School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510006, China;
2 Sun Yat sen University Shenzhen Research Institute, Shenzhen 518057, China
Abstract  Research on p-channel field-effect transistors (p-FETs) remains limited, primarily due to the significantly lower conductivity of the two-dimensional hole gas (2DHG) compared to the two-dimensional electron gas (2DEG) in n-channel field-effect transistors (n-FETs), which poses a significant challenge for monolithic integration. In this study, we investigate the impact of epitaxial structure parameters on 2DHG properties in p-GaN/AlGaN/GaN heterostructures through semiconductor technology computer-aided design (TCAD) simulations and theoretical calculations, identifying the conditions necessary to achieve high-density 2DHG. Our simulations demonstrate that increasing the p-GaN thickness leads to two critical thicknesses determined by surface states and acceptor ionization concentration: one corresponds to the onset of 2DHG formation, and the other to its saturation. Lowering the donor surface state energy level and increasing the acceptor ionization concentration promote 2DHG formation and saturation, although the saturated density remains independent of surface states. Additionally, a higher Al composition enhances intrinsic ionization due to stronger polarization effects, thereby increasing the 2DHG sheet density. Consequently, to achieve high-density 2DHG in p-GaN/AlGaN/GaN heterostructures, it is essential to increase the Al composition, ensure that the p-GaN thickness exceeds the critical thickness for 2DHG saturation, and maximize the acceptor ionization concentration. This study elucidates the impact of epitaxial structure parameters on 2DHG properties in p-GaN/AlGaN/GaN heterostructures and provides valuable guidance for the optimization of p-FET designs.
Keywords:  p-GaN/AlGaN/GaN heterostructures      2DHG      surface states      acceptor doping  
Received:  16 January 2025      Revised:  19 March 2025      Accepted manuscript online:  07 April 2025
PACS:  71.55.Eq (III-V semiconductors)  
  71.23.An (Theories and models; localized states)  
  71.55.-i (Impurity and defect levels)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB3604203), the Key Research and Development Program of Guangdong Province, China (Grant No. 2024B0101060002), and the Key Research and Development Program of Shenzhen City, China (Grant No. JCYJ20241202130036043).
Corresponding Authors:  Yang Liu     E-mail:  liuy69@mail.sysu.edu.cn

Cite this article: 

Fuzhou Wen(文福洲), Qianshu Wu(吴千树), Jinwei Zhang(张津玮), Zhuoran Luo(罗卓然), Senyuan Xu(许森源), Hao Jiang(江灏), and Yang Liu(刘扬) Impact of epitaxial structural parameters on two-dimensional hole gas properties in p-GaN/AlGaN/GaN heterostructures 2025 Chin. Phys. B 34 077105

[1] Haziq M, Falina S, Manaf A A, Kawarada H and Syamsul M 2022 Micromachines 13 2133
[2] Islam N, Mohamed M F P, Khan M F A J, Falina S, Kawarada H and Syamsul M 2022 Crystals 12 1581
[3] He J, Cheng W C, Wang Q, Cheng K, Yu H and Chai Y 2021 Adv. Electronic Materials 7 2001045
[4] Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, SchaffWJ, Eastman L F, Dimitrov R,Wittmer L, Stutzmann M, Rieger W and Hilsenbeck J 1999 J. Appl. Phys. 85 3222
[5] Chen K J, Häberlen O, Lidow A, lin Tsai C, Ueda T, Uemoto Y and Wu Y 2017 IEEE Trans. Electron Dev. 64 779
[6] HuqueMA, Islam S K, Tolbert LMand Blalock B J 2012 IEEE Trans. Power Electron. 27 4153
[7] Cui M, Bu Q, Cai Y, Sun R, LiuW,Wen H, Lam S, Liang Y C, Mitrovic I Z and Taylor S 2019 Jpn. J. Appl. Phys. 58 056505
[8] Emon A I, Mirza A B, Kaplun J, Vala S S and Luo F 2022 IEEE J. Emerg. Select. Top. Power Electron. 11 2707
[9] Trescases O, Murray S, Jiang W and Zaman M 2020 IEEE International Electron Devices Meeting (IEDM), December 12-18, Electr Network, p. 27.4.1
[10] Basler M, Reiner R, Moench S, Benkhelifa F, Döring P, Waltereit P, Quay R and Ambacher O 2021 IEEE Access 9 163122
[11] Wei J, Zheng Z, Tang G, Xu H, Lyu G, Zhang L, Chen J, Hua M, Feng S and Chen T 2023 IEEE Trans. Electron Dev. 71 1365
[12] Wei J, Tang G, Xie R and Chen K J 2020 Jpn. J. Appl. Phys. 59 SG0801
[13] Sun R, Liang Y C, Yeo Y C, Zhao C, ChenWand Zhang B 2019 IEEE J. Emerg. Selec. Top. Power Electron. 8 31
[14] Tang G, Kwan A M, Wong R K, Lei J, Su R, Yao F, Lin Y, Yu J, Tsai T and Tuan H 2017 IEEE Electron Dev. Lett. 38 1282
[15] Amano H, Baines Y, Beam E, Borga M, Bouchet T, Chalker P R, Charles M, Chen K J, Chowdhury N and Chu R 2018 J. Phys. D: Appl. Phys. 51 163001
[16] Wong K Y R, Kwan M H, Yao F W, Tsai M W, Lin Y S, Chang Y C, Chen P C, Su R Y, Yu J L, Yang F J, Lansbergen G P, Hsiung C W, Lai Y A, Chiu K L, Chen C F, Lin M C, Wu H Y, Chiang C H, Liu S D, Chiu H C, Liu P C, Chen C M, Yu C Y, Tsai C S, Wu C B, Lin B, Chang M H, You J S, Wang S P, Chen L C, Liao Y Y, Tsai L Y, Tsai T, Tuan H C and Kalnitsky A 2015 IEEE International Electron Devices Meeting (IEDM), December 07-09, Washington, DC, p. 9.5.1
[17] Van Hove M, Boulay S, Bahl S R, Stoffels S, Kang X, Wellekens D, Geens K, Delabie A and Decoutere S 2012 IEEE Electron Dev. Lett. 33 667
[18] Bader S J, Lee H, Chaudhuri R, Huang S, Hickman A, Molnar A, Xing H G, Jena D, Then H W and Chowdhury N 2020 IEEE Trans. Electron Dev. 67 4010
[19] Peralagu U, Alian A, Putcha V, Khaled A, Rodriguez R, Sibaja- Hernandez A, Chang S, Simoen E, Zhao S E, De Jaeger B, Fleetwood D M, Wambacq P, Zhao M, Parvais B, Waldron N and Collaert N 2019 IEEE International Electron Devices Meeting (IEDM), December 09- 11, San Francisco, CA, p. 17.2.1
[20] Zheng Z, Zhang L, SongW, Feng S, Xu H, Sun J, Yang S, Chen T,Wei J and Chen K 2021 Nat. Electron. 4 595
[21] Hahn H, Reuters B, Kotzea S, Lükens G, Geipel S, Kalisch H and Vescan A 2014 72nd Annual Device Research Conference (DRC), June 22-25, Univ Calif, Santa Barbara, CA, p. 259
[22] Chu R, Cao Y, Chen M, Li R and Zehnder D 2016 IEEE Electron Dev. Lett. 37 269
[23] Nakajima A, Sumida Y, Dhyani M H, Kawai H and Narayanan E M S 2010 Appl. Phys. Express 3 121004
[24] Nakajima A, Liu P, Ogura M, Makino T, Kakushima K, Nishizawa S I, Ohashi H, Yamasaki S and Iwai H 2014 J. Appl. Phys. 115 153707
[25] Wang Y, Huang S, Jiang Q, Wang X, Ji Z, Fan J, Yin H, Wei K, Liu X, Sun Q and Chen K J 2023 Appl. Phys. Lett. 123 262107
[26] He H and Yang S 2022 Chin. Phys. B 31 017104
[27] Shao P, Fan X, Li S, Chen S, Zhou H, Liu H, Guo H, Xu W, Tao T, Xie Z, Lu H, Wang K, Liu B, Chen D, Zheng Y and Zhang R 2023 Appl. Phys. Lett. 122 142102
[28] Ng Y H, Zheng Z, Zhang L, Liu R, Chen T, Feng S, Shao Q and Chen K J 2023 Appl. Phys. Lett. 123 142106
[29] Lähnemann J, Brandt O, Jahn U, Pfüller C, Roder C, Dogan P, Grosse F, Belabbes A, Bechstedt F, Trampert A and Geelhaar L 2012 Phys. Rev. B 86 081302
[30] Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 10024
[31] Yan W S, Zhang R, Xiu X Q, Xie Z L, Han P, Jiang R L, Gu S L, Shi Y and Zheng Y D 2007 Appl. Phys. Lett. 90 212102
[32] Rumyantsev S L, Shur M S and Levinshtein M E 2004 International Journal of High Speed Electronics and Systems 14 1
[33] Shalish I, Shapira Y, Burstein L and Salzman J 2001 J. Appl. Phys. 89 390
[34] Chen J, Huang W, Qu H, Zhang Y, Zhou J, Chen B and Zou X 2022 Appl. Phys. Lett. 120 212105
[35] Sang L, Ren B, Nabatame T, Sumiya M and Liao M 2021 J. Alloys Compd. 853 157356 (in Chinese)
[1] Topological phase transition in compressed van der Waals superlattice heterostructure BiTeCl/HfTe2
Zhilei Li(李志磊), Yinxiang Li(李殷翔), Yiting Wang(王奕婷), Wenzhi Chen(陈文执), and Bin Chen(陈斌). Chin. Phys. B, 2024, 33(8): 087102.
[2] Topological superconductors with spin-triplet pairings and Majorana Fermi arcs
Shi Huang(黄石) and Xi Luo(罗熙). Chin. Phys. B, 2024, 33(8): 087301.
[3] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[4] Effects of oxygen/nitrogen co-incorporation on regulation of growth and properties of boron-doped diamond films
Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(11): 118102.
[5] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[6] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[7] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[8] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[9] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
[10] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[11] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[12] Electronic structure of correlated topological insulator candidate YbB6 studied by photoemission and quantum oscillation
T Zhang(张腾), G Li(李岗), S C Sun(孙淑翠), N Qin(秦娜), L Kang(康璐), S H Yao(姚淑华), H M Weng(翁红明), S K Mo, L Li(李璐), Z K Liu(柳仲楷), L X Yang(杨乐仙), Y L Chen(陈宇林). Chin. Phys. B, 2020, 29(1): 017304.
[13] Measurement of the bulk and surface bands in Dirac line-node semimetal ZrSiS
Guang-Hao Hong(洪光昊), Cheng-Wei Wang(王成玮), Juan Jiang(姜娟), Cheng Chen(陈成), Sheng-Tao Cui(崔胜涛), Hai-Feng Yang(杨海峰), Ai-Ji Liang(梁爱基), Shuai Liu(刘帅), Yang-Yang Lv(吕洋洋), Jian Zhou(周健), Yan-Bin Chen(陈延彬), Shu-Hua Yao(姚淑华), Ming-Hui Lu(卢明辉), Yan-Feng Chen(陈延峰), Mei-Xiao Wang(王美晓), Le-Xian Yang(杨乐仙), Zhong-Kai Liu(柳仲楷), Yu-Lin Chen(陈宇林). Chin. Phys. B, 2018, 27(1): 017105.
[14] Impurity effect on surface states of Bi (111) ultrathin films
Kai Zhu(朱凯), Dai Tian(田岱), Lin Wu(伍琳), Jianli Xu(许建丽), Xiaofeng Jin(金晓峰). Chin. Phys. B, 2016, 25(8): 087303.
[15] Influence of surface states on deep level transient spectroscopy in AlGaN/GaN heterostructure
Qing Zhu(朱青), Xiao-Hua Ma(马晓华), Wei-Wei Chen(陈伟伟), Bin Hou(侯斌), Jie-Jie Zhu(祝杰杰), Meng Zhang(张濛), Li-Xiang Chen(陈丽香), Yan-Rong Cao(曹艳荣), Yue Hao(郝跃). Chin. Phys. B, 2016, 25(6): 067305.
No Suggested Reading articles found!