Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 077106    DOI: 10.1088/1674-1056/addcc5
RAPID COMMUNICATION Prev   Next  

Momentum-dependent anisotropy of the charge density wave gap in quasi-1D ZrTe3-xSex (x = 0.015)

Renjie Zhang(张任杰)1,2,†, Yudong Hu(胡裕栋)3,†, Yiwei Cheng(程以伟)4,3,†, Yigui Zhong(钟益桂)5, Xuezhi Chen(陈学智)4,3, Junqin Li(李俊琴)4, Kozo Okazaki5, Yaobo Huang(黄耀波)4, Tian Shang(商恬)6, Shifeng Jin(金士锋)1,2, Baiqing Lv(吕佰晴)9,3,7,8,‡, and Hong Ding(丁洪)3,10,11
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China;
4 Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China;
5 The Institute for Solid State Physics, The University of Tokyo, Chiba 277-8581, Japan;
6 Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China;
7 School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
8 Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China;
9 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China;
10 Hefei National Laboratory, Hefei 230088, China;
11 New Cornerstone Science Laboratory, Shanghai 201210, China
Abstract  The charge density wave (CDW) state is a ubiquitous ordered phase in condensed matter systems, characterized by a periodic modulation of the electronic charge density. In many CDW materials, superconductivity (SC) emerges in close proximity to, or coexists with, the CDW phase, offering a valuable platform to explore the interplay between these two competing orders. The ZrTe$_{3-x}$Se$_x$ family provides an ideal system for investigating this interplay, as both CDW-dominated and superconductivity-dominated end members have been well studied, while the intermediate compositions remain largely unexplored. In this study, we employ high-resolution angle-resolved photoemission spectroscopy (ARPES) to systematically investigate the band structure and CDW gap in Se-doped ZrTe$_{3-x}$Se$_{x}$ ($x= 0.015$), a prototypical system exhibiting the coexistence of CDW and superconductivity phases. Detailed analysis of the band structure across the Brillouin zone reveals highly momentum-dependent, anisotropic CDW gaps. Quasi-2D Fermi surface centered at $\bar{\varGamma }$ exhibits the absence of CDW gap, while on quasi-1D Fermi surface along the Brillouin zone boundary, there is also a highly anisotropic distribution of CDW gap. The gap is zero at $\bar{B}$, while reaching its maximum at a nesting vector consistent with the bulk CDW modulation. These results provide direct evidence that quasi-1D Fermi surface nesting is the primary driving force behind CDW formation in this compound. Notably, our measurements reveal a strongly suppressed density of state around $E_{\rm F}$ even out of CDW gap and absence of band folding induced by Fermi surface nesting. This observation suggests that selenium doping enhances fluctuations of the CDW order parameter, thereby weakening the long-range CDW coherence. Such enhanced fluctuations are likely to facilitate SC pairing, contributing to the observed increase in the SC transition temperature of the doped samples. Our findings not only provide comprehensive understanding of the CDW state in the ZrTe$_{3-x}$Se$_{x}$ family but also demonstrate that chemical doping provides an effective route to tune the competition between CDW and superconductivity.
Keywords:  charge density wave      superconductivity      angle-resolved photoemission spectroscopy      ZeTe$_{3-x}$Se$_{x}$  
Received:  25 April 2025      Revised:  21 May 2025      Accepted manuscript online:  23 May 2025
PACS:  71.45.Lr (Charge-density-wave systems)  
  79.60.-i (Photoemission and photoelectron spectra)  
  71.55.-i (Impurity and defect levels)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
Fund: B. L. acknowledges support from the National Key R&D Program of China (Grant No. 2023YFA1407400), the National Natural Science Foundation of China (Grant No. 12374063), the Shanghai Natural Science Fund for Original Exploration Program (Grant No. 23ZR1479900), and the Cultivation Project of Shanghai Research Center for Quantum Sciences (Grant No. LZPY2024). H. D. acknowledges support from the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302700), the New Cornerstone Science Foundation (Grant No. 23H010801236), and the National Natural Science Foundation of China (Grant No. 12488101). We acknowledge the technical support provided by the BL09U (31124.02.SSRF.BL09U) beamlines at the Shanghai Synchrotron Radiation Facility (SSRF) for conducting the ARPES measurements.
Corresponding Authors:  Baiqing Lv     E-mail:  baiqing@sjtu.edu.cn

Cite this article: 

Renjie Zhang(张任杰), Yudong Hu(胡裕栋), Yiwei Cheng(程以伟), Yigui Zhong(钟益桂), Xuezhi Chen(陈学智), Junqin Li(李俊琴), Kozo Okazaki, Yaobo Huang(黄耀波), Tian Shang(商恬), Shifeng Jin(金士锋), Baiqing Lv(吕佰晴), and Hong Ding(丁洪) Momentum-dependent anisotropy of the charge density wave gap in quasi-1D ZrTe3-xSex (x = 0.015) 2025 Chin. Phys. B 34 077106

[1] Zhu X, Cao Y, Zhang J, Plummer E W and Guo J 2015 Proc. Natl. Acad. Sci. USA 112 2367
[2] Leroux M, Mishra V, Opagiste C, Rodière P, Kayani A, KwokWK and Welp U 2020 Phys. Rev. B 102 094519
[3] Zhang J, Jia Y, Wang X, Li Z, Duan L, Li W, Zhao J, Cao L, Dai G, Deng Z, Zhang S, Feng S, Yu R, Liu Q, Hu J, Zhu J and Jin C 2019 NPG Asia Mater. 11 1
[4] Ortiz B R, Teicher S M L, Kautzsch L, Sarte P M, Ratcliff N, Harter J, Ruff J P C, Seshadri R and Wilson S D 2021 Phys. Rev. X 11 041030
[5] Kundu A K, Rajapitamahuni A, Vescovo E, Klimovskikh I I, Berger H and Valla T 2024 Commun. Mater. 5 208
[6] Sur Y, Gim D H, Bhoi D, Jang D H, Murata K, Hu J W, Zhang K, Cao Z Y, Struzhkin V V, Chen X J and Kim K H 2025 NPG Asia Mater. 17 1
[7] Heil C, Poncé S, Lambert H, Schlipf M, Margine E R and Giustino F 2017 Phys. Rev. Lett. 119 087003
[8] Liu H, Huangfu S, Zhang X, Lin H and Schilling A 2021 Phys. Rev. B 104 064511
[9] da Silva Neto E H, Aynajian P, Frano A, Comin R, Schierle E,Weschke E, Gyenis A, Wen J, Schneeloch J, Xu Z, Ono S, Gu G, Le Tacon M and Yazdani A 2014 Science 343 393
[10] Kawasaki S, Tsukuda N, Lin C and Zheng G 2024 Nat. Commun. 15 5082
[11] Tabis W, Li Y, Tacon M L, Braicovich L, Kreyssig A, Minola M, Dellea G, Weschke E, Veit M J, Ramazanoglu M, Goldman A I, Schmitt T, Ghiringhelli G, Barišić N, Chan M K, Dorow C J, Yu G, Zhao X, Keimer B and Greven M 2014 Nat. Commun. 5 5875
[12] Ghiringhelli G, Tacon M L, Minola M, Blanco-Canosa S, Mazzoli C, Brookes N B, Luca G M D, Frano A, Hawthorn D G, He F, Loew T, Sala M M, Peets D C, Salluzzo M, Schierle E, Sutarto R, Sawatzky G A, Weschke E, Keimer B and Braicovich L 2012 Science 337 821
[13] Takahashi S, Sambongi T, Brill J W and Roark W 1984 Solid State Commun. 49 1031
[14] Yokoya T, Kiss T, Chainani A, Shin S and Yamaya K 2005 Phys. Rev. B 71 140504
[15] Eaglesham D J, Steeds JWandWilson J A 1984 J. Phys. C: Solid State Phys. 17 L697
[16] Liu L, Zhu C, Liu Z Y, Deng H, Zhou X B, Li Y, Sun Y, Huang X, Li S, Du X, Wang Z, Guan T, Mao H, Sui Y, Wu R, Yin J X, Cheng J G and Pan S H 2021 Phys. Rev. Lett. 126 256401
[17] Nomura A, Kobayashi S, Ohta S and Sakata H 2021 Europhys. Lett. 133 37003
[18] Imry Y and Ma S 1975 Phys. Rev. Lett. 35 1399
[19] Sham L J and Patton B R 1976 Phys. Rev. B 13 3151
[20] Zhu X, Ning W, Li L, Ling L, Zhang R, Zhang J, Wang K, Liu Y, Pi L, Ma Y, Du H, Tian M, Sun Y, Petrovic C and Zhang Y 2016 Sci. Rep. 6 26974
[21] Cui S, He L P, Hong X C, Zhu X D, Petrovic C and Li S Y 2016 Chin. Phys. B 25 077403
[22] Hoesch M, Cui X, Shimada K, Battaglia C, Fujimori S and Berger H 2009 Phys. Rev. B 80 075423
[23] Hoesch M, Gannon L, Shimada K, Parrett B J, Watson M D, Kim T K, Zhu X and Petrovic C 2019 Phys. Rev. Lett. 122 017601
[24] Lei H, Zhu X and Petrovic C 2011 Europhys. Lett. 95 17011
[25] Ganose A M, Gannon L, Fabrizi F, Nowell H, Barnett S A, Lei H, Zhu X, Petrovic C, Scanlon D O and Hoesch M 2018 Phys. Rev. B 97 155103
[26] Zhu X, Lei H and Petrovic C 2011 Phys. Rev. Lett. 106 246404
[27] Chen X, Zhu C, Lei B, Zhuo W, Wang W, Ma J, Luo X, Xiang Z and Chen X 2024 Phys. Rev. B 109 144513
[28] Rahn D J, Hellmann S, Kalläne M, Sohrt C, Kim T K, Kipp L and Rossnagel K 2012 Phys. Rev. B 85 224532
[1] Ground state of electron-doped tt'J model on cylinders: An investigation of finite size and boundary condition effects
Yang Shen(沈阳), Xiangjian Qian(钱湘坚), and Mingpu Qin(秦明普). Chin. Phys. B, 2025, 34(8): 087105.
[2] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[3] Superconductivity in YbN4H12 under low pressures
Xiang Wang(汪翔), Chenlong Xie(谢晨龙), Haohao Hong(洪浩豪), Yanliang Wei(魏衍亮), Zhao Liu(刘召), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(8): 087401.
[4] High-pressure studies on quasi-one-dimensional systems
Wenhui Liu(刘雯慧), Jiajia Feng(冯嘉嘉), Wei Zhou(周苇), Sheng Li(李升), and Zhixiang Shi(施智祥). Chin. Phys. B, 2025, 34(8): 088104.
[5] Observation of a long-range unidirectional charge density wave in kagome superconductor KV3Sb5
Xingwei Shi(石兴伟), Xiao Liu(刘潇), Geng Li(李更), Zhen Zhao(赵振), Haitao Yang(杨海涛), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(7): 077101.
[6] Competing phases and suppression of superconductivity in hole-doped Hubbard model on honeycomb lattice
Hao Zhang(张浩), Shaojun Dong(董少钧), and Lixin He(何力新). Chin. Phys. B, 2025, 34(7): 077102.
[7] In-plane negative magnetoresistance and quantum oscillations in van der Waals antiferromagnet DyTe3
Qi Qi(齐琦), Senhao Lv(吕森浩), Ke Zhu(祝轲), Yaofeng Xie(谢耀锋), Guojing Hu(胡国静), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Yang Yang(杨洋), Lihong Bao(鲍丽宏), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(7): 077305.
[8] Doping evolution of nodal electron dynamics in trilayer cuprate superconductor Bi2Sr2Ca2Cu3O10+δ revealed by laser-based angle-resolved photoemission spectroscopy
Hao Chen(陈浩), Jumin Shi(史聚民), Xiangyu Luo(罗翔宇), Yinghao Li(李颖昊), Yiwen Chen(陈逸雯), Chaohui Yin(殷超辉), Yingjie Shu(束英杰), Jiuxiang Zhang(张九相), Taimin Miao(苗泰民), Bo Liang(梁波), Wenpei Zhu(朱文培), Neng Cai(蔡能), Xiaolin Ren(任晓琳), Chengtian Lin(林成天), Shenjin Zhang(张申金), Zhimin Wang(王志敏), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Guodong Liu(刘国东), Hanqing Mao(毛寒青), Xintong Li(李昕彤), Lin Zhao(赵林), and X. J. Zhou(周兴江). Chin. Phys. B, 2025, 34(7): 077404.
[9] Strongly tunable Ising superconductivity in van der Waals NbSe2-xTex nanosheets
Jingyuan Qu(曲静远), Guojing Hu(胡国静), Cuili Xiang(向翠丽), Hui Guo(郭辉), Senhao Lv(吕森浩), Yechao Han(韩烨超), Guoyu Xian(冼国裕), Qi Qi(齐琦), Zhen Zhao(赵振), Ke Zhu(祝轲), Xiao Lin(林晓), Lihong Bao(鲍丽宏), Yongjin Zou(邹勇进), Lixian Sun(孙立贤), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(6): 067401.
[10] Pressure-induced superconductivity in Bi-doped BaFe2(As1-xBix)2 single crystals
Chang Su(苏畅), Wuhao Chen(陈吴昊), Wenjing Cheng(程文静), Jiabin Si(司佳斌), Qunfei Zheng(郑群飞), Jinlong Zhu(朱金龙), Lingyi Xing(邢令义), and Ying Liu(刘影). Chin. Phys. B, 2025, 34(6): 067403.
[11] Anisotropic two-band α-model and its application to layered chalcogenide superconductor NbSe2
Jiang-Ning Zhang(张江宁), Guo Wang(王果), Tian-Yi Han(韩天意), and Hai Huang(黄海). Chin. Phys. B, 2025, 34(5): 057401.
[12] Regulation of superconductivity in Nb thin films induced by interstitial oxygen atoms
Yuchuan Liu(刘钰川), Ming Yang(杨明), Yun Fan(范云), Zulei Xu(徐祖磊), Yu Wu(吴禹), Yixin Liu(刘以鑫), Wei Peng(彭炜), Gang Mu(牟刚), and Zhi-Rong Lin(林志荣). Chin. Phys. B, 2025, 34(4): 047401.
[13] Well defined phase boundaries and superconductivity with high Tc in PbSe single crystal
Jiawei Hu(胡佳玮), Yanghao Meng(孟养浩), He Zhang(张赫), Wei Zhong(钟韦), Hang Zhai(翟航), Xiaohui Yu(于晓辉), Binbin Yue(岳彬彬), and Fang Hong(洪芳). Chin. Phys. B, 2025, 34(4): 046102.
[14] Strain-modulated superconductivity of monolayer Tc2B2
Zhengtao Liu(刘正涛), Zihan Zhang(张子涵), Hao Song(宋昊), Tian Cui(崔田), and Defang Duan(段德芳). Chin. Phys. B, 2025, 34(4): 047104.
[15] Scanning tunneling microscopy study on symmetry breaking of charge density wave in FeGe
Jiakang Zhang(张嘉康), Ziyuan Chen(陈子元), Xueliang Wu(吴学良), Mingzhe Li(李明哲), Yuanji Li(李元骥), Ruotong Yin(尹若彤), Jiashuo Gong(巩佳硕), Shiyuan Wang(王适源), Aifeng Wang(王爱峰), Dong-Lai Feng(封东来), and Ya-Jun Yan(闫亚军). Chin. Phys. B, 2025, 34(4): 047303.
No Suggested Reading articles found!