Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 077104    DOI: 10.1088/1674-1056/adcaa1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Non-Hermitian birefringent Dirac fermions driven by electromagnetic fields

Kai Liu(刘恺)1,2, Wan-Zi Sun(孙万梓)1,2, Cheng-Xi Li(李成蹊)1,2,†, and Wu-Ming Liu(刘伍明)1,2,3,‡
1 Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We investigate the behavior of non-Hermitian birefringent Dirac fermions by examining their interaction with electromagnetic fields through renormalization group analysis. Our research reveals that the interplay between non-Hermiticity and birefringence leads to distinct behaviors in two and three dimensions, where the system exhibits different fixed points and scaling properties due to dimension-dependent charge renormalization effects. In two dimensions, where the electronic charge remains unrenormalized, the system flows in the deep infrared limit from non-Hermitian birefringent spin-3/2 fermions to two copies of non-Hermitian spin-1/2 Dirac fermions, demonstrating a crossover of relativistic liquid and non-relativistic liquid. In three dimensions, dynamic screening of electromagnetic interactions modifies the logarithmic growth of Fermi velocity, leading to richer quantum corrections while maintaining similar suppression of birefringence in the infrared limit. Our findings provide theoretical insights into the emergence of Lorentz symmetry in non-Hermitian systems, laying theoretical foundations for studying low-energy behavior in other non-Hermitian models.
Keywords:  non-Hermitian birefringent Dirac fermions      renormalization group analysis      dimension-dependent charge renormalization      non-Hermitian Fermi velocity      Lorentz symmetry  
Received:  17 February 2025      Revised:  08 April 2025      Accepted manuscript online:  09 April 2025
PACS:  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  71.10.-w (Theories and models of many-electron systems)  
  71.10.Ay (Fermi-liquid theory and other phenomenological models)  
  71.15.Rf (Relativistic effects)  
Fund: Project supported by the National Key Research and Development Program of China (Grants Nos. 2021YFA1400900, 2021YFA0718300, and 2021YFA1400243), the National Natural Science Foundation of China (Grant Nos. 61835013, 12174461, and 12234012), and the Fund from the Space Application System of China Manned Space Program.
Corresponding Authors:  Cheng-Xi Li, Wu-Ming Liu     E-mail:  lcxtom@icloud.com;wliu@iphy.ac.cn

Cite this article: 

Kai Liu(刘恺), Wan-Zi Sun(孙万梓), Cheng-Xi Li(李成蹊), and Wu-Ming Liu(刘伍明) Non-Hermitian birefringent Dirac fermions driven by electromagnetic fields 2025 Chin. Phys. B 34 077104

[1] Kawabata K, Shiozaki K, Ueda M and Sato M 2019 Phys. Rev. X 9 041015
[2] Hurst H M and Flebus B 2022 J. Appl. Phys. 132 220902
[3] Cao H and Wiersig J 2015 Rev. Mod. Phys. 87 61
[4] Roccati F and Palma G M, Ciccarello F and Bagarello F 2022 Open Systems and Information Dynamics 29 2250004
[5] Rahul S and Sarkar S 2022 Sci. Rep. 12 6993
[6] Zhao W L and Liu J 2024 Phys. Rev. A 109 052215
[7] Hsieh C T and Chang P Y 2023 SciPost Physics Core 6 062
[8] Li C, Wu Y and Liu W M 2024 Phys. Rev. B 109 214306
[9] Wang H Y and Liu W M 2022 Phys. Rev. A 106 052216
[10] Wang H Y, Yang Z B and Liu W M 2024 Quantum Science and Technology 9 025019
[11] Wang H and Liu W 2023 Physica A 619 128733
[12] Martinez Alvarez V, Barrios Vargas J, Berdakin M and Foa Torres L 2018 Eur. Phys. J. Special Topics 227 1295
[13] Zhang K, Yang Z and Fang C 2022 Phys. Rev. A 106 052216
[14] Della Valle F, Ejlli A, Gastaldi U, Messineo G, Milotti E, Pengo R, Ruoso G and Zavattini G 2016 Eur. Phys. J. C 76 1
[15] Chen C, Wang S S, Liu L, Yu Z M, Sheng X L, Chen Z and Yang S A 2017 Phys. Rev. Mater. 1 044201
[16] Cerjan A, Huang S, Wang M, Chen K P, Chong Y and Rechtsman M C 2019 Nat. Photon. 13 623
[17] Juričić V and Roy B 2024 Commun. Phys. 7 169
[18] Roy B, Smith P M and Kennett M P 2012 Phys. Rev. B 85 235119
[19] Peng Y, Jie J, Yu D and Wang Y 2022 Phys. Rev. B 106 L161402
[20] Li C A, Trauzettel B, Neupert T and Zhang S B 2023 Phys. Rev. Lett. 131 116601
[21] Lu M, Zhang X X and Franz M 2021 Phys. Rev. Lett. 127 256402
[22] Jung C, Müller M and Rotter I 1999 Phys. Rev. E 60 114
[23] Berry M and Dennis M 2003 Proc. Roy. Soc. London. Ser. A: Math. Phys. Eng. Sci. 459 1261
[24] Król M, Septembre I, Oliwa P, Kedziora M, Łempicka-Mirek K, Muszyński M, Mazur R, Morawiak P, Piecek W, Kula P, et al. 2022 Nat. Commun. 13 5340
[25] Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L J, Liu X P and Chen Y F 2020 Adv. Mater. 32 1903639
[26] Murshed S A and Roy B 2024 Journal of High Energy Physics 2024 1
[27] Metzner W, Salmhofer M, Honerkamp C, Meden V and Schönhammer K 2012 Rev. Mod. Phys. 84 299
[28] Benfatto G and Gallavotti G 1990 Phys. Rev. B 42 9967
[29] Gentile G and Mastropietro V 2001 Phys. Rep. 352 273
[30] Jones-Smith K and Mathur H 2014 Phys. Rev. D 89 125014
[31] Lima F, Monteiro L and Almeida C 2023 Physica E 150 115682
[32] Gomes Y 2024 Eur. Phys. J. C 84 1
[33] Jebraeilli A and Geller M R 2025 Phys. Rev. A 111 032211
[34] Romito A 2023 Nat. Phys. 19 1234
[35] Long Y, Xue H and Zhang B 2022 Phys. Rev. B 105 L100102
[36] Zhang B, Li Q, Zhang X and Lee C H 2022 Chin. Phys. B 31 070308
[37] Liu T, He J J, Yang Z and Nori F 2021 Phys. Rev. Lett. 127 196801
[38] Leibbrandt G 1975 Rev. Mod. Phys. 47 849
[39] Xu H Y, Wang G L, Huang L and Lai Y C 2018 Phys. Rev. Lett. 120 124101
[40] Roy B and Juričić V 2020 Phys. Rev. Res. 2 012047
[41] Onuma T and Otani Y 2014 Opt. Commun. 315 69
[42] Otani Y, Shimada T, Yoshizawa T and Umeda N 1994 Optical Engineering 33 1604
[43] Murshed S A and Roy B 2025 SciPost Physics 18 073
[44] Cerjan A and Fan S 2017 Phys. Rev. Lett. 118 253902
[45] Golubtsova A, Nikolaev A and Podoinitsyn M 2024 Phys. Rev. D 110 066011
[1] Ground state of electron-doped tt'J model on cylinders: An investigation of finite size and boundary condition effects
Yang Shen(沈阳), Xiangjian Qian(钱湘坚), and Mingpu Qin(秦明普). Chin. Phys. B, 2025, 34(8): 087105.
[2] Competing phases and suppression of superconductivity in hole-doped Hubbard model on honeycomb lattice
Hao Zhang(张浩), Shaojun Dong(董少钧), and Lixin He(何力新). Chin. Phys. B, 2025, 34(7): 077102.
[3] Classifying extended, localized and critical states in quasiperiodic lattices via unsupervised learning
Bohan Zheng(郑博涵), Siyu Zhu(朱思宇), Xingping Zhou(周兴平), and Tong Liu(刘通). Chin. Phys. B, 2025, 34(1): 017103.
[4] Phase induced localization transition
Tong Liu(刘通), Xingbo Wei(魏兴波), and Youguo Wang(王友国). Chin. Phys. B, 2024, 33(10): 107103.
[5] Pairing correlation of the kagome-lattice Hubbard model with the nearest-neighbor interaction
Chen Yang(杨晨), Chao Chen(陈超), Runyu Ma(马润宇), Ying Liang(梁颖), and Tianxing Ma(马天星). Chin. Phys. B, 2024, 33(10): 107404.
[6] Determining Hubbard U of VO2 by the quasi-harmonic approximation
Longjuan Kong(孔龙娟), Yuhang Lu(陆雨航), Xinying Zhuang(庄新莹), Zhiyong Zhou(周志勇), and Zhenpeng Hu(胡振芃). Chin. Phys. B, 2024, 33(1): 016302.
[7] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[8] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[9] Invariable mobility edge in a quasiperiodic lattice
Tong Liu(刘通), Shujie Cheng(成书杰), Rui Zhang(张锐), Rongrong Ruan(阮榕榕), and Houxun Jiang(姜厚勋). Chin. Phys. B, 2022, 31(2): 027101.
[10] Mobility edges and reentrant localization in one-dimensional dimerized non-Hermitian quasiperiodic lattice
Xiang-Ping Jiang(蒋相平), Yi Qiao(乔艺), and Jun-Peng Cao(曹俊鹏). Chin. Phys. B, 2021, 30(9): 097202.
[11] Real-space parallel density matrix renormalization group with adaptive boundaries
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), and Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2021, 30(8): 080202.
[12] Floquet topological phase transition in two-dimensional quadratic band crossing system
Guo-Bao Zhu(朱国宝) and Hui-Min Yang(杨慧敏). Chin. Phys. B, 2021, 30(6): 067304.
[13] Superfluid states in α-T3 lattice
Yu-Rong Wu(吴玉容) and Yi-Cai Zhang(张义财). Chin. Phys. B, 2021, 30(6): 060306.
[14] Charge structure factors of doped armchair nanotubes in the presence of electron-phonon interaction
Hamed Rezania, Farshad Azizi. Chin. Phys. B, 2020, 29(9): 096501.
[15] Improved hybrid parallel strategy for density matrix renormalization group method
Fu-Zhou Chen(陈富州), Chen Cheng(程晨), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(7): 070202.
No Suggested Reading articles found!