|
|
Measurement of the bulk and surface bands in Dirac line-node semimetal ZrSiS |
Guang-Hao Hong(洪光昊)1,2,4, Cheng-Wei Wang(王成玮)3,4, Juan Jiang(姜娟)2,5,6, Cheng Chen(陈成)7, Sheng-Tao Cui(崔胜涛)2, Hai-Feng Yang(杨海峰)2, Ai-Ji Liang(梁爱基)2, Shuai Liu(刘帅)2, Yang-Yang Lv(吕洋洋)8, Jian Zhou(周健)8, Yan-Bin Chen(陈延彬)8, Shu-Hua Yao(姚淑华)8, Ming-Hui Lu(卢明辉)8, Yan-Feng Chen(陈延峰)8, Mei-Xiao Wang(王美晓)2, Le-Xian Yang(杨乐仙)9, Zhong-Kai Liu(柳仲楷)2, Yu-Lin Chen(陈宇林)2,7,9 |
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 School of Physical Science and Technology, ShanghaiTech University and Chinese Academy of Sciences-Shanghai Science Research Center, Shanghai 201210, China;
3 Center for Excellence in Superconducting Electronics, State Key Laboratory of Functional Material for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China;
5 Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;
6 Pohang Accelerator Laboratory, POSTECH, Pohang 790-784, Korea;
7 Department of Physics, University of Oxford, Oxford, OX1 3PU, UK;
8 National Laboratory of Solid State Microstructures, School of Physics and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China;
9 State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics and Collaborative Innovation Center of Quantum Matter, Tsinghua University, Beijing 100084, China |
|
|
Abstract Dirac semimetals are materials in which the conduction and the valence bands have robust crossing points protected by topology or symmetry. Recently, a new type of Dirac semimetals, so called the Dirac line-node semimetals (DLNSs), have attracted a lot of attention, as they host robust Dirac points along the one-dimensional (1D) lines in the Brillouin zone (BZ). In this work, using angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations, we systematically investigated the electronic structures of non-symmorphic ZrSiS crystal where we clearly distinguished the surface states from the bulk states. The photon-energy-dependent measurements further prove the existence of Dirac line node along the X-R direction. Remarkably, by in situ surface potassium doping, we clearly observed the different evolutions of the bulk and surface electronic states while proving the robustness of the Dirac line node. Our studies not only reveal the complete electronic structures of ZrSiS, but also demonstrate the method manipulating the electronic structure of the compound.
|
Received: 28 October 2017
Accepted manuscript online:
|
PACS:
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
79.60.-i
|
(Photoemission and photoelectron spectra)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0305400), Chinese Academy of Science——Shanghai Science Research Center (Grant No. CAS-SSRC-YH-2015-01), the National Natural Science Foundation of China (Grant No. 11674229), the Engineering and Physical Sciences Research Council Platform (Grant No. EP/M020517/1), and the Hefei Science——Center Chinese Academy of Sciences (Grant No. 2015HSC-UE013). |
Corresponding Authors:
Zhong-Kai Liu, Yu-Lin Chen
E-mail: liuzhk@shanghaitech.edu.cn;yulin.chen@physics.ox.ac.uk
|
Cite this article:
Guang-Hao Hong(洪光昊), Cheng-Wei Wang(王成玮), Juan Jiang(姜娟), Cheng Chen(陈成), Sheng-Tao Cui(崔胜涛), Hai-Feng Yang(杨海峰), Ai-Ji Liang(梁爱基), Shuai Liu(刘帅), Yang-Yang Lv(吕洋洋), Jian Zhou(周健), Yan-Bin Chen(陈延彬), Shu-Hua Yao(姚淑华), Ming-Hui Lu(卢明辉), Yan-Feng Chen(陈延峰), Mei-Xiao Wang(王美晓), Le-Xian Yang(杨乐仙), Zhong-Kai Liu(柳仲楷), Yu-Lin Chen(陈宇林) Measurement of the bulk and surface bands in Dirac line-node semimetal ZrSiS 2018 Chin. Phys. B 27 017105
|
[1] |
Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
|
[2] |
Wang Z J, Sun Y, Chen X Q, Franchini C, Xu G, Weng H M, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
|
[3] |
Wang Z J, Weng H M, Wu Q S, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
|
[4] |
Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864
|
[5] |
Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z and Chen Y L 2014 Nat. Mater. 13 677
|
[6] |
Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F and Hasan M Z 2014 Nat. Commun. 5 3786
|
[7] |
Ali M N, Gibson Q, Jeon S, Zhou B B, Yazdani A and Cava R J 2014 Inorg. Chem. 53 4062
|
[8] |
Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Buchner B and Cava R J 2014 Phys. Rev. Lett. 113 027603
|
[9] |
Feng J Y, Pang Y, Wu D S, Wang Z J, Weng H M, Li J Q, Dai X, Fang Z, Shi Y G and Lu L 2015 Phys. Rev. B 92 081306
|
[10] |
Liang T, Gibson Q, Ali M N, Liu M H, Cava R J and Ong N P 2015 Nat. Mater. 14 280
|
[11] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[12] |
Zyuzin A A, Wu S and Burkov A A 2012 Phys. Rev. B 85 165110
|
[13] |
Weng H M, Fang C, Fang Z, Bernevig B A and Dai X 2015 Phys. Rev. X 5 011029
|
[14] |
Xu S Y, Belopolski I, Alidoust N, et al. 2015 Science 349 613
|
[15] |
Lv B Q, Xu N, Weng H M, Ma J Z, Richard P, Huang X C, Zhao L X, Chen G F, Matt C E, Bisti F, Strocov V N, Mesot J, Fang Z, Dai X, Qian T, Shi M and Ding H 2015 Nat. Phys. 11 724
|
[16] |
Yang L X, Liu Z K, Sun Y, Peng H, Yang H F, Zhang T, Zhou B, Zhang Y, Guo Y F, Rahn M, Prabhakaran D, Hussain Z, Mo S K, Felser C, Yan B and Chen Y L 2015 Nat. Phys. 11 728
|
[17] |
Young S M and Kane C L 2015 Phys. Rev. Lett. 115 126803
|
[18] |
Singha R, Pariari A K, Satpati B and Mandal P 2017 Proc. Natl. Acad. Sci. USA 114 2468
|
[19] |
Wang X F, Pan X C, Gao M, Yu J H, Jiang J, Zhang J R, Zuo H K, Zhang M H, Wei Z X, Niu W, Xia Z C, Wan X G, Chen Y L, Song F Q, Xu Y B, Wang B G, Wang G H and Zhang R 2016 Adv. Electron. Mater. 2 1600228
|
[20] |
Lv Y Y, Zhang B B, Li X, Yao S H, Chen Y B, Zhou J, Zhang S T, Lu M H and Chen Y F 2016 Appl. Phys. Lett. 108 244101
|
[21] |
Kumar N, Manna K, Qi Y P, Wu S C, Wang L, Yan B H, Felser C and Shekhar C 2017 Phys. Rev. B 95 121109
|
[22] |
Xu Q N, Song Z D, Nie S M, Weng H M, Fang Z and Dai X 2015 Phys. Rev. B 92 205310
|
[23] |
Neupane M, Belopolski I, Hosen M M, Sanchez D S, Sankar R, Szlawska M, Xu S Y, Dimitri K, Dhakal N, Maldonado P, Oppeneer P M, Kaczorowski D, Chou F C, Hasan M Z and Durakiewicz T 2016 Phys. Rev. B 93 201104
|
[24] |
Schoop L M, Ali M N, Strasser C, Topp A, Varykhalov A, Marchenko D, Duppel V, Parkin S S P, Lotsch B V and Ast C R 2016 Nat. Commun. 7 11696
|
[25] |
Topp A, Lippmann J M, Varykhalov A, Duppel V, Lotsch B, Ast C R and Schoop L M 2016 New. J. Phys. 18 125014
|
[26] |
Chen C, Xu X, Jiang J, et al. 2017 Phys. Rev. B 95 125126
|
[27] |
Takane D, Wang Z W, Souma S, Nakayama K, Trang C X, Sato T, Takahashi T and Ando Y 2016 Phys. Rev. B 94 121108
|
[28] |
http://www.openmx-square.org.
|
[29] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|