Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨)1,2, Li-Qin Yan(闫丽琴)1,2, Yang-Tao Su(苏仰涛)1,2, Li Wang(王力)1,2, Xin-Yu Cao(曹昕宇)1,2, Lin-Zhu Bi(毕林竹)1,2, Yang Meng(孟洋)1,2, Yang Sun(孙阳)1,2, and Hong-Wu Zhao(赵宏武)1,2,3, †
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 3 Songshan Lake Materials Laboratory, Dongguan 523808, China
We investigate the modulation of magnetic anisotropy of thulium iron garnet (TmIG) films by interfaced Bi2Se3 thin films. High quality epitaxial growth of Bi2Se3 films has been achieved by molecular beam epitaxy on TmIG films. By the method of ferromagnetic resonance, we find that the perpendicular magnetic anisotropy (PMA) of TmIG can be greatly strengthened by the adjacent Bi2Se3 layer. Moreover, the competition between topological surface states and thickness dependent bulk states of Bi2Se3 gives rise to the modulation of PMA of the Bi2Se3/TmIG heterostructures. The interfacial interaction can be attributed to the enhanced exchange coupling between Fe3+ ions of TmIG mediated by topological surface electrons of Bi2Se3.
Received: 12 August 2020
Revised: 16 September 2020
Accepted manuscript online: 28 September 2020
Fund: the National Key Basic Research Project of China (Grant No. 2016YFA0300600), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB33020300), and the National Natural Science Foundation of China (Grant Nos. 11604375 and 11874416).
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武) Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures 2020 Chin. Phys. B 29 117302
Fig. 1.
(a) The 2θ–ω XRD scan of a TmIG (22 nm) film. (b) Hysteresis loop of a TmIG film (35 nm) with out-of-plane applied field. Inset: the in-plane hysteresis loop. (c) RHEED patterns of TmIG (12 nm), and (d) Bi2Se3 (8 nm)/TmIG (12 nm).
Fig. 2.
(a) FMR derivative absorption spectra of TmIG (12 nm), TmIG (12 nm)/Bi2Se3 (6 nm), and TmIG (12 nm)/Pt (6 nm) with out-of-plane applied magnetic fields. (b) FMR spectra of TmIG (12 nm)/Bi2Se3 (6 nm) as H is rotated from the film normal (θH = 0°) to in-plane (θH = 90°). (c) θH dependence of Hres for TmIG (12 nm),TmIG (12 nm)/Bi2Se3 (6 nm), and TmIG (12 nm)/Pt (6 nm). The points are experimental data and the solid lines represent the theoretical fit. (d) The tBS dependence of Ha for TmIG (12 nm)/Bi2Se3 (tBS) heterostructures. The upper and lower dashed lines show the Ha values of TmIG (12 nm) and TmIG (12 nm)/Pt (6 nm), respectively.
Fig. 3.
Temperature dependence of Ha for TmIG (12 nm), TmIG (12 nm)/Bi2Se3 (6 nm), TmIG (12 nm)/Bi2Se3 (12 nm), and TmIG (12 nm)/Pt (6 nm), respectively.
Katmis F, Lauter V, Nogueira F S, Assaf B A, Jamer M E, Wei P, Satpati B, Freeland J W, Eremin I, Heiman D, Jarillo-Herrero P, Moodera J S 2016 Nature533 513 DOI: 10.1038/nature17635
[3]
Li M, Song Q, Zhao W, Garlow J A, Liu T H, Wu L, Zhu Y, Moodera J S, Chan M H W, Chen G, Chang C Z 2017 Phys. Rev. B96 201301 DOI: 10.1103/PhysRevB.96.201301
[4]
Watanabe R, Yoshimi R, Kawamura M, Mogi M, Tsukazaki A, Yu X Z, Nakajima K, Takahashi K S, Kawasaki M, Tokura Y 2019 Appl. Phys. Lett.115 102403 DOI: 10.1063/1.5111891
Fanchiang Y T, Chen K H M, Tseng C C, Chen C C, Cheng C K, Yang S R, Wu C N, Lee S F, Hong M, Kwo J 2018 Nat. Commun.9 223 DOI: 10.1038/s41467-017-02743-2
[8]
Tang C, Song Q, Chang C Z, Xu Y, Ohnuma Y, Matsuo M, Liu Y, Yuan W, Yao Y, Moodera J S, Maekawa S, Han W, Shi J 2018 Sci. Adv.4 eaas8660 DOI: 10.1126/sciadv.aas8660
[9]
Liu T, Kally J, Pillsbury T, Liu C, Chang H, Ding J, Cheng Y, Hilse M, Engel-Herbert R, Richardella A, Samarth N, Wu M 2020 Phys. Rev. Lett.125 017204 DOI: 10.1103/PhysRevLett.125.017204
[10]
Landolt G, Schreyeck S, Eremeev S V, Slomski B, Muff S, Osterwalder J, Chulkov E V, Gould C, Karczewski G, Brunner K, Buhmann H, Molenkamp L W, Dil J H 2014 Phys. Rev. Lett.112 057601 DOI: 10.1103/PhysRevLett.112.057601
[11]
Chen C C, Chen K H M, Fanchiang Y T, Tseng C C, Yang S R, Wu C N, Guo M X, Cheng C K, Huang S W, Lin K Y, Wu C T, Hong M, Kwo J 2019 Appl. Phys. Lett.114 031601 DOI: 10.1063/1.5054329
[12]
Yang C Y, Lee Y H, Ou Yang K H, Chiu K C, Tang C, Liu Y, Zhao Y F, Chang C Z, Chang F H, Lin H J, Shi J, Lin M T 2019 Appl. Phys. Lett.114 082403 DOI: 10.1063/1.5083931
Kakazei G N, Wigen P E, Guslienko K Y, Chantrell R W, Lesnik N A, Metlushko V, Shima H, Fukamichi K, Otani Y, Novosad V 2003 J. Appl. Phys.93 8418 DOI: 10.1063/1.1556978
[15]
Wu C N, Tseng C C, Lin K Y, Cheng C K, Yeh S L, Fanchiang Y T, Hong M, Kwo J 2018 AIP Adv.8 055904 DOI: 10.1063/1.5006673
Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys.6 584 DOI: 10.1038/nphys1689
[18]
Neupane M, Richardella A, Sànchez-Barriga J, Xu S, Alidoust N, Belopolski I, Liu C, Bian G, Zhang D, Marchenko D, Varykhalov A, Rader O, Leandersson M, Balasubramanian T, Chang T R, Jeng H T, Basak S, Lin H, Bansil A, Samarth N, Hasan M Z 2014 Nat. Commun.5 1 DOI: 10.1038/ncomms4841
[19]
Wang H, Kally J, Lee J S, Liu T, Chang H, Hickey D R, Mkhoyan K A, Wu M, Richardella A, Samarth N 2016 Phys. Rev. Lett.117 076601 DOI: 10.1103/PhysRevLett.117.076601
He L, Xiu F, Yu X, Teague M, Jiang W, Fan Y, Kou X, Lang M, Wang Y, Huang G, Yeh N C, Wang K L 2012 Nano Lett.12 1486 DOI: 10.1021/nl204234j
[22]
Quindeau A, Avci C O, Liu W, Sun C, Mann M, Tang A S, Onbasli M C, Bono D, Voyles P M, Xu Y, Robinson J, Beach G S D, Ross C A 2017 Adv. Electron. Mater.3 1600376 DOI: 10.1002/aelm.201600376
[23]
Wang Y, Deorani P, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2015 Phys. Rev. Lett.114 257202 DOI: 10.1103/PhysRevLett.114.257202
[24]
Shao Q, Grutter A, Liu Y, Yu G, Yang C Y, Gilbert D A, Arenholz E, Shafer P, Che X, Tang C, Aldosary M, Navabi A, He Q L, Kirby B J, Shi J, Wang K L 2019 Phys. Rev. B99 104401 DOI: 10.1103/PhysRevB.99.104401
[25]
Shao Q, Liu Y, Yu G, Kim S K, Che X, Tang C, He Q L, Tserkovnyak Y, Shi J, Wang K L 2019 Nat. Electron.2 182 DOI: 10.1038/s41928-019-0246-x
[26]
Yang S R, Fanchiang Y T, Chen C C, Tseng C C, Liu Y C, Guo M X, Hong M, Lee S F, Kwo J 2019 Phys. Rev. B100 045138 DOI: 10.1103/PhysRevB.100.045138
The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.